Forgot password?
 Create new account
View 2394|Reply 7

[不等式] 再看看一个不等式的证明

[Copy link]

1

Threads

1

Posts

10

Credits

Credits
10

Show all posts

下半辈子 Posted at 2013-9-27 12:47:20 |Read mode
a,b,c正数 1.png

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-9-27 12:50:57
排序不等式即可
PS、主题分类

1

Threads

1

Posts

10

Credits

Credits
10

Show all posts

 Author| 下半辈子 Posted at 2013-9-27 13:03:50
我想直接均值或者柯西,不知道行不行?

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-9-27 13:37:28
去分母展开整理成 $\sum a^3c\geqslant abc\sum a$,即 $\sum(a^2/b)\geqslant\sum a$,均值柯西都行。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-27 14:32:12
这两个不等式很相像:
$\sum \dfrac{a}{b+c}\geqslant\dfrac32$,
$\sum \dfrac{a}{a+b}\geqslant\dfrac32$,
到底哪个是成立的,哪个是不成立的或反向的?
应该是$\sum \dfrac{a}{a+b}\leqslant\dfrac32$?

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-9-27 14:33:15
回复 5# 其妙

后面两个不成立

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-27 15:02:05
回复 6# kuing
那搞局部不等式来证明就有点麻烦了

3

Threads

8

Posts

57

Credits

Credits
57

Show all posts

szl6208 Posted at 2013-9-30 19:22:28
直接配方:
a+b+c-a*(b+c)/(a+b)-b*(c+a)/(b+c)-c*(a+b)/(c+a)=
(a-b)^2*c*a/(a+b)/(b+c)/(c+a)+(-c+b)^2*a*b/(a+b)/(b+c)/(c+a)+(-c+a)^2*b*c/(a+b)/(b+c)/(c+a)

手机版Mobile version|Leisure Math Forum

2025-4-21 19:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list