Forgot password
 Register account
View 2541|Reply 7

[不等式] 再看看一个不等式的证明

[Copy link]

1

Threads

1

Posts

0

Reputation

Show all posts

下半辈子 posted 2013-9-27 12:47 |Read mode
a,b,c正数 1.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-27 12:50
排序不等式即可
PS、主题分类

1

Threads

1

Posts

0

Reputation

Show all posts

original poster 下半辈子 posted 2013-9-27 13:03
我想直接均值或者柯西,不知道行不行?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-27 13:37
去分母展开整理成 $\sum a^3c\geqslant abc\sum a$,即 $\sum(a^2/b)\geqslant\sum a$,均值柯西都行。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-27 14:32
这两个不等式很相像:
$\sum \dfrac{a}{b+c}\geqslant\dfrac32$,
$\sum \dfrac{a}{a+b}\geqslant\dfrac32$,
到底哪个是成立的,哪个是不成立的或反向的?
应该是$\sum \dfrac{a}{a+b}\leqslant\dfrac32$?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-27 14:33
回复 5# 其妙

后面两个不成立

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-27 15:02
回复 6# kuing
那搞局部不等式来证明就有点麻烦了

3

Threads

8

Posts

0

Reputation

Show all posts

szl6208 posted 2013-9-30 19:22
直接配方:
a+b+c-a*(b+c)/(a+b)-b*(c+a)/(b+c)-c*(a+b)/(c+a)=
(a-b)^2*c*a/(a+b)/(b+c)/(c+a)+(-c+b)^2*a*b/(a+b)/(b+c)/(c+a)+(-c+a)^2*b*c/(a+b)/(b+c)/(c+a)

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 06:07 GMT+8

Powered by Discuz!

Processed in 0.015346 seconds, 25 queries