|
战巡
发表于 2014-12-13 06:11
回复 1# abababa
\[\int_0^{\frac{\pi}{2}}\sin^2(x)\ln(\sin(x))dx=\int_0^{\frac{\pi}{2}}(1-\cos^2(x))\ln(\sin(x))dx\]
\[=-\frac{\pi}{2}\ln(2)-\int_0^{\frac{\pi}{2}}\cos^2(x)\ln(\sin(x))dx\]
然后有:
\[\int_0^{\frac{\pi}{2}}\cos^2(x)\ln(\sin(x))dx-\int_0^{\frac{\pi}{2}}\sin^2(x)\ln(\sin(x))dx=\int_0^{\frac{\pi}{2}}\cos(2x)\ln(\sin(x))dx\]
\[=[-\frac{1}{2}x-\frac{1}{4}\sin(2x)+\frac{1}{2}\sin(2x)\ln(\sin(2x))]^{\frac{\pi}{2}}_0=-\frac{\pi}{4}\]
于是:
\[\begin{cases}
\int_0^{\frac{\pi}{2}}\sin^2(x)\ln(\sin(x))dx+\int_0^{\frac{\pi}{2}}\cos^2(x)\ln(\sin(x))dx=-\frac{\pi}{2}\ln(2)\\
\int_0^{\frac{\pi}{2}}\sin^2(x)\ln(\sin(x))dx-\int_0^{\frac{\pi}{2}}\cos^2(x)\ln(\sin(x))dx=\frac{\pi}{4}
\end{cases}\]
可得
\begin{cases}
\int_0^{\frac{\pi}{2}}\sin^2(x)\ln(\sin(x))dx=\frac{\pi}{8}-\frac{\pi}{4}\ln(2)\\
\int_0^{\frac{\pi}{2}}\cos^2(x)\ln(\sin(x))dx=-\frac{\pi}{8}-\frac{\pi}{4}\ln(2)
\end{cases}
其实一开始我还想过一种更一般的做法,不过涉及的高等内容比较多
令函数:
\[f(n)=\int_0^{\frac{\pi}{2}}\sin^n(x)dx=\frac{\sqrt{\pi}}{2}\frac{\Gamma(\frac{1}{2}+\frac{n}{2})}{\Gamma(1+\frac{n}{2})}\]
有:
\[f'(n)=\int_0^{\frac{\pi}{2}}\frac{\partial}{\partial n}\sin^n(x)dx=\int_0^{\frac{\pi}{2}}\ln(\sin(x))\sin^n(x)dx\]
另一方面有
\[f'(n)=\frac{d}{dn}\frac{\sqrt{\pi}}{2}\frac{\Gamma(\frac{1}{2}+\frac{n}{2})}{\Gamma(1+\frac{n}{2})}=\frac{\sqrt{\pi}}{2}\frac{\frac{1}{2}\Gamma'(\frac{1}{2}+\frac{n}{2})\Gamma(1+\frac{n}{2})-\frac{1}{2}\Gamma(\frac{1}{2}+\frac{n}{2})\Gamma'(1+\frac{n}{2})}{\Gamma^2(1+\frac{n}{2})}\]
\[=\frac{\sqrt{\pi}}{4}\frac{\Gamma(\frac{1}{2}+\frac{n}{2})}{\Gamma(1+\frac{n}{2})}[\psi(\frac{1}{2}+\frac{n}{2})-\psi(1+\frac{n}{2})]\]
其中$\psi(x)$为双伽马函数,有:
\[\psi(x)=\frac{d}{dx}\ln(\Gamma(x))=\frac{\Gamma'(x)}{\Gamma(x)}\]
而对于$\psi(x)$来说,如果带入整数和半整数,有:
\begin{cases}
\psi(n)=\sum_{k=1}^{n-1}\frac{1}{k}-\gamma\\
\psi(n+\frac{1}{2})=\sum_{k=1}^n\frac{2}{2k-1}-2\ln(2)-\gamma
\end{cases}
其中$\gamma\approx 0.577216...$为欧拉常数
就原题来说,如果带入$n=2$,有:
\[\int_0^{\frac{\pi}{2}}\ln(\sin(x))\sin^2(x)dx=\frac{\sqrt{\pi}}{4}\frac{\Gamma(\frac{1}{2}+1)}{\Gamma(1+1)}[\psi(\frac{1}{2}+1)-\psi(1+1)]\]
\[=\frac{\sqrt{\pi}}{4}\frac{\frac{\sqrt{\pi}}{2}}{1}[2-2\ln(2)-\gamma-(1-\gamma)]=\frac{\pi}{8}(1-2\ln(2))\] |
|