Forgot password
 Register account
View 1770|Reply 2

[分析/方程] 求证$|\int_{a}^{b}f(x)dx-(b-a)f(a)|\le\frac{1}{α+1}(b-a)^{α+1}$

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2014-12-12 16:32 |Read mode
设$f(x)$在$[a,b]$上有定义,且对$[a,b]$上任意点$x,y$,有$\abs{f(x)-f(y)}\le\abs{x-y}^{\alpha}, \alpha>0$,求证$\abs{\int_{a}^{b}f(x)dx-(b-a)f(a)}\le\frac{1}{\alpha+1}(b-a)^{\alpha+1}$
我先证明了$f(x)$在$[a,b]$上可积,只要证明$f(x)$在$[a,b]$上连续,由定义知只要存在$\delta$使得对任意$\varepsilon>0$,当$\abs{x-y}<\delta$时有$\abs{f(x)-f(y)} < \varepsilon$
然后因为$\abs{f(x)-f(y)} \le \abs{x-y}^{\alpha}$,这样就只要存在$\delta$使得当$\abs{x-y}<\delta$时有$\abs{x-y}^{\alpha}<\varepsilon$
只要$\delta^{\alpha} < \varepsilon$,只要$\delta < \varepsilon^{\frac{1}{\alpha}}$,这样就存在$\delta$了,于是$f(x)$在$[a,b]$上连续,就可积了
然后我想用积分中值定理来做,但是没做出来,请教怎么来解

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-12-12 16:48
\begin{align*}
\left|\int_a^b{f(x)\rmd x}-(b-a)f(a)\right|
&=\left|\int_a^b{f(x)-f(a)\rmd x}\right| \\
& \leqslant \int_a^b\abs{f(x)-f(a)}\rmd x \\
& \leqslant \int_a^b\abs{x-a}^\alpha\rmd x \\
& =\int_0^{b-a}x^\alpha\rmd x \\
& =\frac{(b-a)^{\alpha+1}}{\alpha+1}.
\end{align*}

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2014-12-12 17:37
回复 2# kuing
谢谢,原来是把$f(a)$弄到积分号里面

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 11:08 GMT+8

Powered by Discuz!

Processed in 0.010652 seconds, 22 queries