|
渝X教师多多(2859*****) 17:11:29
如何处理?
题目:已知 $G$ 点为 $\triangle ABC$ 的重心,且 $\vv{AG}\perp\vv{BG}$,若 $1/\tan A+1/\tan B=2\lambda/\tan C$,则实数 $\lambda$ 的值为[选项略]
\begin{align*}
0&=3\vv{AG}\cdot3\vv{BG} \\
& =\bigl(\vv{AB}+\vv{AC}\bigr)\cdot\bigl(\vv{BA}+\vv{BC}\bigr) \\
& =-\vv{AB}^2+\vv{AB}\cdot\bigl(\vv{BC}-\vv{AC}\bigr)+\vv{AC}\cdot\vv{BC} \\
& =-2AB^2+\frac{AC^2+BC^2-\bigl(\vv{AC}-\vv{BC}\bigr)^2}2 \\
& =\frac{a^2+b^2-5c^2}2,
\end{align*}
得到
\[a^2+b^2=5c^2,\]
故
\begin{align*}
\lambda &=\frac{\tan C}2\left( \frac1{\tan A}+\frac1{\tan B} \right) \\
& =\frac{\sin C}{2\cos C}\cdot \frac{\cos A\sin B+\cos B\sin A}{\sin A\sin B} \\
& =\frac{\sin ^2C}{2\cos C\sin A\sin B} \\
& =\frac{c^2}{2ab\cos C} \\
& =\frac{c^2}{a^2+b^2-c^2} \\
& =\frac14.
\end{align*} |
|