|
青青子衿
Posted 2015-2-15 20:34
Last edited by hbghlyj 2025-4-9 22:27分别求多项式 $x^n-1$ 在实数域与复数域上的分解式.
解:$x^n-1$ 在复数域上的 $n$ 个根为
\[
x_k=\omega_k=\cos \frac{2 k \pi}{n}+\mathrm{i} \sin \frac{2 k \pi}{n}, \quad k=0,1, \cdots, n-1
\]
我们有
\[
\begin{aligned}
\overline{x_k} & =\cos \frac{2 k \pi}{n}-\mathrm{i} \sin \frac{2 k \pi}{n}=\cos \frac{2(n-k) \pi}{n}+\mathrm{i} \sin \frac{2(n-k) \pi}{n} \\
x_k+\overline{x_k} & =2 \cos \frac{2 k \pi}{n}, \quad x_k \cdot \overline{x_k}=1
\end{aligned}
\]
所以,当 $n$ 为偶数时
\[
\begin{aligned}
x^n-1 & =(x-1) \prod_{k=1}^{n-1}\left(x-\cos \frac{2 k \pi}{n}-i \sin \frac{2 k \pi}{n}\right) \\
& =(x-1)(x+1) \prod_{k=1}^{\frac{n}{2}-1}\left(x^2-2x\cos \frac{2 k \pi}{n}+1\right)
\end{aligned}
\]
当 $n$ 为奇数时
\[
\begin{aligned}
x^n-1 & =(x-1) \prod_{k=1}^{n-1}\left(x-\cos \frac{2 k \pi}{n}-i \sin \frac{2 k \pi}{n}\right) \\
& =(x-1) \prod_{k=1}^{\frac{n-1}{2}}\left(x^2-2x\cos \frac{2 k \pi}{n} +1\right)
\end{aligned}
\] |
|