Forgot password?
 Register account
View 1330|Reply 4

分解因式

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2015-1-31 20:48 |Read mode
在实数范围内分解因式:$x^4+x^3+x^2+x+1$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-1-31 20:53

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2015-1-31 22:09
十年前的提问

十年后有人写了解法

bbs.pep.com.cn/forum.php?mod=viewthread&t … 905&extra=page=1

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-2-1 00:58
回复 3# Tesla35

一样类型,也属于2#链接里的情形

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2015-2-15 20:34
Last edited by hbghlyj 2025-4-9 22:27分别求多项式 $x^n-1$ 在实数域与复数域上的分解式.
解:$x^n-1$ 在复数域上的 $n$ 个根为
\[
x_k=\omega_k=\cos \frac{2 k \pi}{n}+\mathrm{i} \sin \frac{2 k \pi}{n}, \quad k=0,1, \cdots, n-1
\]
我们有
\[
\begin{aligned}
\overline{x_k} & =\cos \frac{2 k \pi}{n}-\mathrm{i} \sin \frac{2 k \pi}{n}=\cos \frac{2(n-k) \pi}{n}+\mathrm{i} \sin \frac{2(n-k) \pi}{n} \\
x_k+\overline{x_k} & =2 \cos \frac{2 k \pi}{n}, \quad x_k \cdot \overline{x_k}=1
\end{aligned}
\]
所以,当 $n$ 为偶数时
\[
\begin{aligned}
x^n-1 & =(x-1) \prod_{k=1}^{n-1}\left(x-\cos \frac{2 k \pi}{n}-i \sin \frac{2 k \pi}{n}\right) \\
& =(x-1)(x+1) \prod_{k=1}^{\frac{n}{2}-1}\left(x^2-2x\cos \frac{2 k \pi}{n}+1\right)
\end{aligned}
\]
当 $n$ 为奇数时
\[
\begin{aligned}
x^n-1 & =(x-1) \prod_{k=1}^{n-1}\left(x-\cos \frac{2 k \pi}{n}-i \sin \frac{2 k \pi}{n}\right) \\
& =(x-1) \prod_{k=1}^{\frac{n-1}{2}}\left(x^2-2x\cos \frac{2 k \pi}{n} +1\right)
\end{aligned}
\]

Mobile version|Discuz Math Forum

2025-5-31 10:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit