|
kuing
Posted 2015-2-24 23:47
Last edited by hbghlyj 2025-5-10 17:33\begin{aligned}
& a=y+z ; \\
& b=z+x ; \\
& c=x+y ; \\
& \text{Maximize}[\{\sqrt{x y z(x+y+z)}, \\
& \quad x>0 \& \& y>0 \& \& z>0 \& \&(a-b)^2=(b-c) c \\
& \left.\left.\quad \& \& a^4==\frac{27}{64}\right\},\{x, y, z\}\right]
\end{aligned}
\begin{aligned}
& \left\{\frac{\sqrt{3}}{4},\right. \\
& \left\{x \rightarrow \operatorname{Root}\left[-27+64=1^4 \&, 2\right], y \rightarrow \operatorname{Root}\left[-1+192 \neq 1^4 \&, 2\right]\right. \\
& z \rightarrow\left(-\operatorname{Root}\left[-27+64=1^4 \&, 2\right]^2+\operatorname{Root}\left[-27+64=1^4 \&, 2\right]\right. \\
& \left.\quad \operatorname{Root}\left[-1+192=1^4 \&, 2\right]-2 \operatorname{Root}\left[-1+192=1^4 \&, 2\right]^2\right) / \\
& \left.\left.\quad\left(-\operatorname{Root}\left[-27+64=1^4 \&, 2\right]-\operatorname{Root}\left[-1+192=1^4 \&, 2\right]\right)\right\}\right\}
\end{aligned}
看来结果是对的,除非我把海伦公式记错…… |
|