Forgot password
 Register account
original poster: longzaifei

一道三角题目

[Copy link]

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-7-21 12:26
Last edited by hbghlyj 2025-5-10 17:31回复 2# kuing
\[
\begin{aligned}
& \text {令 } x=t y \text {. 则 } \frac{s^2}{a^4}=\frac{t(t+1)^2\left(t^2+2-t\right)\left(2 t^2+t+3\right)}{\left(t^2+3\right)^4}=f(t) \\
& f^{\prime}(t)=\frac{-2(t-3)(t+1)\left(t^6+5 t^5+t^4+10 t^3+3 t^2+9 t+3\right)}{\left(t^2+3\right)^5}
\end{aligned}
\]
故 $f(t)$ 在 $(0,3)$ 上递增,在 $(3,+\infty)$ 递减,$f(t)$ 的最大值为 $f(3)=\frac{4}{9}$. kuing均值时的系数由待定系数法可得,哪位老师能请教一下,谢谢

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-7-21 21:49
Last edited by hjfmhh 2015-7-21 22:28回复 22# hjfmhh

求其妙解释

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2015-7-22 17:58
回复 23# hjfmhh
不会

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-7-22 19:53
回复 24# 其妙


    那只有劳驾大神kuing了,学习一下大师的待定系数法

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2015-7-25 10:25
回复 25# hjfmhh
他不是写了吗?

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-7-26 17:26
回复 26# 其妙


    看不懂,您写写具体点,谢谢

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:28 GMT+8

Powered by Discuz!

Processed in 0.011870 seconds, 22 queries