Forgot password?
 Register account
View 1717|Reply 4

[数列] 数列和最值

[Copy link]

186

Threads

206

Posts

2150

Credits

Credits
2150

Show all posts

guanmo1 Posted 2015-3-11 14:55 |Read mode
Last edited by hbghlyj 2025-3-3 21:24\begin{aligned}
& x_0=0 \\
& \{x_k\}: \quad\abs{x_k}=\abs{x_{k-1}+3} \quad(k \geqslant 1) \\
& \text {求 }\abs{x_1+x_2+\cdots+x_{2006}} \text { 的最小值 }
\end{aligned}

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2015-3-11 20:02
$x_k=3a_k,|3a_k|=|3a_{k-1}+3|,|a_k|=|a_{k-1}+1|$

$\displaystyle s=\sum_{k=1}^{2006} a_k =\sum_{k=1}^{N_1} k-\sum_{k=N_2}^{N_1+1} k+\sum_{k=N_2-1}^{N_3} k -\sum_{k=N_4}^{N_3+1} k+\cdots+\sum_{k=N_{n-1}-1}^{N_n} k$(一般性就失一下吧)

$\displaystyle s=C_{N_n+1}^2+\sum_{k=1}^{n-1} (-1)^k N_k -n+1$
$\displaystyle 2006=N_n+2n-2-2\sum_{k=1}^{n-1} (-1)^k N_k$
$N_n^2+2N_n-2s-2006=0$

$N_n=\cfrac{-2+\sqrt{8028+8s}}{2},s=9$
$\displaystyle |\sum_{k=1}^{2006} x_k|\ge 27$

186

Threads

206

Posts

2150

Credits

Credits
2150

Show all posts

 Author| guanmo1 Posted 2015-3-11 21:04
回复 2# tommywong


    汗,貌似没看懂的样子

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted 2015-3-13 09:09
有高手给解释解释吗????

7

Threads

8

Posts

195

Credits

Credits
195

Show all posts

创之谜 Posted 2025-3-3 20:38
接2#
$平方后2a_{k}=a^2_{k+1}-a^2_{k}-1\riff 2S_{2006}=a^2_{2007}-2007$
$\therefore|S_{2006}|\ge9(再构造个取等即可) $

Mobile version|Discuz Math Forum

2025-6-5 01:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit