Forgot password?
 Register account
View 2859|Reply 15

$\ln2$与$\dfrac32\ln2$,求分析

[Copy link]

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

╰☆ヾo.海x Posted 2013-10-1 07:08 |Read mode
Last edited by ╰☆ヾo.海x 2013-10-1 23:41We know:
\begin{equation}\label{csineq}
1-\frac12+\frac13-\frac14+\frac15-\frac16+\frac17-\frac18+\cdots=\ln2
\end{equation}
$(1)\cdot$$\dfrac12$:
\begin{equation}
\frac12-\frac14+\frac16-\frac18+\cdots=\frac12\ln2
\end{equation}
$(1)+(2)$, we have:
\begin{align}
&(1-\frac12+\frac12)+(\frac13-\frac14-\frac14)+(\frac15-\frac16+\frac16)+(\frac17-\frac18-\frac18)+\cdots\notag\\
=&1+(\frac13-\frac12)+\frac15+(\frac17-\frac14)+\cdots=\frac32\ln2
\end{align}
As shown in sequences $(1)$ and $(3)$, they have the "same numbers" but in different orders, why they have different sum?

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

 Author| ╰☆ヾo.海x Posted 2013-10-1 08:03
一句题外话,为什么ln打代码打出来是斜体不是正体...

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2013-10-1 10:37
回复 1# ╰☆ヾo.海x

级数就是这样的啊,改变顺序或者添加括号都可能改变和甚至其敛散性。

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2013-10-1 10:38
回复 2# ╰☆ヾo.海x

再看置顶

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-10-1 10:46
Last edited by 睡神 2013-10-1 17:10回复 1# ╰☆ヾo.海x
尼玛…Sorry!爆了个粗…级数可随意进行加减运算的?
举个例子:
$S=\sum2^n$
$2S=\sum2^{n+1}$
按照你的理论,那么有$S=-2$?
看来我又糗大了…原谅我这傻孩纸…
除了不懂,就是装懂

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

 Author| ╰☆ヾo.海x Posted 2013-10-1 17:32
回复 3# 爪机专用

So you mean it's just a fact, we don't have to/ cannot prove it?

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

 Author| ╰☆ヾo.海x Posted 2013-10-1 17:34
回复 5# 睡神

I don't know...This is the example given to us by our lecturer.

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-10-1 17:51
回复 7# ╰☆ヾo.海x
Oh,my God!I didn't see anything…I go to dive now~
除了不懂,就是装懂

3

Threads

8

Posts

57

Credits

Credits
57

Show all posts

szl6208 Posted 2013-10-1 19:17
绝对收敛的级数,可以任意改变项的次序,任意添加括号,级数的和不变;而条件收敛的级数不行,题中的级数是条件收敛,而不是绝对收敛。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-1 19:26
一句题外话,为什么ln打代码打出来是斜体不是正体...
╰☆ヾo.海x 发表于 2013-10-1 08:03
   代码:\ln x  ,显示:$\ln x$,
代码:ln x    ,显示: $ln x$

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

 Author| ╰☆ヾo.海x Posted 2013-10-1 23:56
回复 10# 其妙

谢咯!

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

 Author| ╰☆ヾo.海x Posted 2013-10-2 06:46
回复 9# szl6208


    谢谢...不过我还是不太懂。。。概念不清。还要做功课

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-2 15:56
回复 12# ╰☆ヾo.海x
该数列的绝对值的前$n$项和有极限吧---叫绝对收敛数列

4

Threads

23

Posts

154

Credits

Credits
154
QQ

Show all posts

pxchg1200 Posted 2013-10-3 12:39
有个著名的Riemman重排定理,就是讲条件收敛的级数,可以通过重新排列从而达到任意的数码。上图好了,无图无真相。
0.GIF
2.GIF
1.GIF
3.GIF
Let's solution say the method!

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2013-11-16 13:20
参考:
搜狗截图_2013-11-16_12-36-05.png

3152

Threads

7905

Posts

610K

Credits

Credits
64068
QQ

Show all posts

hbghlyj Posted 2023-4-15 07:07

Mobile version|Discuz Math Forum

2025-6-4 16:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit