Forgot password?
 Register account
View 2043|Reply 8

[不等式] 不等式

[Copy link]

168

Threads

382

Posts

3324

Credits

Credits
3324

Show all posts

lrh2006 Posted 2015-3-24 08:12 |Read mode
已知实数x,y满足x2+y2+xy=1,则x+2y的最大值为?

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2015-3-24 10:54
这样可以做,x+2y=k,即x=k-2y代入$x^2+y^2+xy-1=0$,看作y的二次方程,从$Δ \ge 0$即可得出k的范围.

168

Threads

382

Posts

3324

Credits

Credits
3324

Show all posts

 Author| lrh2006 Posted 2015-3-24 12:38
回复 2# realnumber


    谢谢!还有别的方法吗,比如直接用个不等式什么的?

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2015-3-24 13:33
Last edited by 战巡 2015-3-24 13:41回复 1# lrh2006


最近开发了新家伙,正好试试炮

令向量$\begin{pmatrix}x\\y\end{pmatrix}=z, \begin{pmatrix}1\\2\end{pmatrix}=a$,矩阵$\begin{pmatrix}1 & \frac{1}{2} \\\frac{1}{2} & 1\end{pmatrix}=A$

则有
\[z^TAz=1\]
要求 $a^Tz$ 最大值

\[f(z)=a^Tz+(z^TAz-1)\lambda\]
注意这里 $\lambda$ 是$1×1$矩阵
取最值时有:
\[\frac{\partial f(z)}{\partial z}=a+2Az\lambda=0\]
\[z^Ta+2z^TAz\lambda=z^Ta+2\lambda=0\]
\[2\lambda=-z^Ta\]
于是
\[a-Azz^Ta=0\]
\[zz^Ta=A^{-1}a\]
\[(a^Tz)(a^Tz)^T=(a^Tz)^2=a^TA^{-1}a=\begin{pmatrix}1&2\end{pmatrix}\begin{pmatrix}\frac{4}{3} & -\frac{2}{3} \\-\frac{2}{3} & \frac{4}{3}\end{pmatrix}\begin{pmatrix}1\\2\end{pmatrix}=4\]
\[a^Tz=\pm2\]


由此还可以推广到更高维,反正整个过程中真正代数据进去算的只有最后,另外就是$z^TAz=1$这里
如果$z^TAz=k$
以此也可证明,只要$\abs{A}\ne 0$,就有$(a^Tz)^2$最大值为$ka^TA^{-1}a$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2015-3-24 14:30
太高科技……只能lu过闪走了……

168

Threads

382

Posts

3324

Credits

Credits
3324

Show all posts

 Author| lrh2006 Posted 2015-3-24 18:04
太高大上了,不是我的水平能理解的。。。。

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2015-3-24 18:40
“实用多元统计分析”P.61上有个广义柯西$(b^T d)^2 \le (b^T Bb)(d^T B^{-1} d)$
可是维基没有......
$(z^T a)^2 \le (z^T Az)(a^T A^{-1} a)$

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2015-3-24 22:47
找到超多柯西不等式推广,$(b^T d)^2 \le (b^T Bb)(d^T B^{-1} d)$还只是在引言部分,先把它放在条目里了

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2015-3-25 10:32
回复 4# 战巡

高等代数还能这么玩

Mobile version|Discuz Math Forum

2025-6-4 21:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit