Forgot password?
 Register account
View 2717|Reply 1

[函数] 一对数型函数的单调性

[Copy link]

460

Threads

952

Posts

9848

Credits

Credits
9848

Show all posts

青青子衿 Posted 2013-10-1 13:50 |Read mode
Last edited by hbghlyj 2025-5-12 16:26$f(x)=\frac{2 \ln x+1}{\ln (2 x+1)} \quad g(x)=\frac{2 \ln x-1}{\ln (2 x+1)}$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-1 14:14
\[f(x)=\frac{2\ln x+1}{\ln(2x+1)},\]
求导得
\[f'(x)=\frac{2\bigl((2x+1)\ln(2x+1)-2x\ln x-x\bigr)}{x(2x+1)\ln^2(2x+1)},\]

\[h(x)=(2x+1)\ln(2x+1)-2x\ln x-x,\]
求导得
\[h'(x)=2\ln(2x+1)-2\ln x-1=2\ln\left(2+\frac1x\right)-1>2\ln2-1>0,\]
而易证 $\lim_{x\to0^+}x\ln x=0$,故得 $\lim_{x\to0^+}h(x)=0$,所以 $h(x)>0$ 恒成立,即 $f'(x)>0$ 恒成立,故 $f(x)$ 递增。

而对于 $g(x)$,显然有
\[g(x)=f(x)-\frac2{\ln(2x+1)},\]
所以亦为单增。

Mobile version|Discuz Math Forum

2025-6-6 02:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit