Forgot password?
 Create new account
View 2571|Reply 1

[函数] 一对数型函数的单调性

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-10-1 13:50:35 |Read mode
搜狗截图_2013-10-01_13-49-59.jpg

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-10-1 14:14:41
\[f(x)=\frac{2\ln x+1}{\ln(2x+1)},\]
求导得
\[f'(x)=\frac{2\bigl((2x+1)\ln(2x+1)-2x\ln x-x\bigr)}{x(2x+1)\ln^2(2x+1)},\]

\[h(x)=(2x+1)\ln(2x+1)-2x\ln x-x,\]
求导得
\[h'(x)=2\ln(2x+1)-2\ln x-1=2\ln\left(2+\frac1x\right)-1>2\ln2-1>0,\]
而易证 $\lim_{x\to0^+}x\ln x=0$,故得 $\lim_{x\to0^+}h(x)=0$,所以 $h(x)>0$ 恒成立,即 $f'(x)>0$ 恒成立,故 $f(x)$ 递增。

而对于 $g(x)$,显然有
\[g(x)=f(x)-\frac2{\ln(2x+1)},\]
所以亦为单增。

手机版Mobile version|Leisure Math Forum

2025-4-21 19:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list