Forgot password?
 Register account
View 2439|Reply 8

[不等式] 一道和为1的不等式问题

[Copy link]

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2015-5-20 19:55 |Read mode
$\sum_{i=1}^{n}x_i=1,x_i>0$,求证
$$\sum_{i<j}\frac{2x_ix_j}{x_i+x_j}\geq n\sum_{i<j}x_ix_j$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-20 20:00

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

 Author| 郝酒 Posted 2015-5-20 22:00
Last edited by 郝酒 2015-5-20 22:06谢谢,最开始的不等式是
$$n\sum_{i=1}^na_i^2-\sum_{i<j}\frac{(a_i-a_j)^2}{a_i+a_j}\leq 1$$
的确是反的。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-21 02:38
谢谢,最开始的不等式是
$$n\sum_{i=1}^na_i^2-\sum_{i<j}\frac{(a_i-a_j)^2}{a_i+a_j}\leq 1$$
的确是反的。
郝酒 发表于 2015-5-20 22:00
擦,这个在本论坛也有 forum.php?mod=viewthread&tid=2354 而且两步搞定!

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

 Author| 郝酒 Posted 2015-6-7 17:41
nb,也就是说SOS那个可以简单证。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-6-7 17:49
回复 5# 郝酒

那你是怎么将3#变成1#的?

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-6-7 19:00
回复 6# kuing
看来问问题还是原版好呀!

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

 Author| 郝酒 Posted 2015-6-10 12:04
Last edited by 郝酒 2015-6-10 12:10\begin{align*}
&n\sum_{i=1}^na_i^2-\sum_{i<j}\frac{(a_i-a_j)^2}{a_i+a_j}\leq 1\\
\Leftrightarrow&n\sum a_i^2\leq\sum(a_i+a_j)-\sum\frac{4a_ia_j}{a_i+a_j}+1\\
\Leftrightarrow&\sum\frac{4a_ia_j}{a_i+a_j}\leq n(1-\sum a_i^2)\\
\Leftrightarrow&\sum\frac{4a_ia_j}{a_i+a_j}\leq n\left((\sum a_i)^2-\sum a_i^2\right)\end{align*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-6-20 02:06
回复 8# 郝酒

soga

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit