Forgot password
 Register account
View 1939|Reply 2

[数列] 求助:一个递推数列问题

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2015-5-25 10:50 |Read mode
\[a_1=\frac{1}{2},a_n\in R^+,a_{n+1}=\frac{a_n^2}{2}+a_n,n\in N^+,b_n=\frac{1}{a_n+2}\]
\[S_n=b_1+b_2+b_3+\cdots+b_n,T_n=b_1b_2b_3\cdots b_n\]
\[求证:2^{n+1}T_n+S_n为定值.\]

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2015-5-25 13:37
$\displaystyle a_1=\frac{1}{2},a_{n+1}=\frac{a_n^2}{2}+a_n=\frac{1}{2}a_n(a_n+2),b_n=\frac{a_n}{2a_{n+1}}=\frac{1}{a_n}-\frac{1}{a_{n+1}}$

$\displaystyle T_n=\frac{a_1}{2^n a_{n+1}},S_n=\sum_{k=1}^n \frac{1}{a_k}-\frac{1}{a_{k+1}}=\frac{1}{a_1}-\frac{1}{a_{n+1}}$

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2015-5-25 15:03
回复 2# tommywong


    en,thanks

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:10 GMT+8

Powered by Discuz!

Processed in 0.012760 seconds, 22 queries