Forgot password?
 Register account
View 7153|Reply 21

[几何] 2015年湖北卷理科第14题:调和点列(与调和线束)

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2015-6-11 15:24 |Read mode
Last edited by isee 2015-6-11 22:39如图,圆$C$与$x$轴相切于点$T(1,0)$ ,与$y$轴正半轴交于两点$A,B$($B$在$A$的上方),且$\abs{AB}=2$.
(Ⅰ)圆C的标准方程为_____略____;
(Ⅱ)过点$A$任作一条直线与圆$O:x^2+y^2=1$相交于$M,N$两点,下列三个结论:① $\dfrac {\abs{NA}}{\abs{NB}}=\dfrac {\abs{MA}}{\abs{MB}}$;  ② (略);  ③ (略).
hbl14.png

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2015-6-11 15:48
第一问略。


从第二问开始:

圆O为单位圆,即有:点$O$为$DE$的中点。

又圆C与x轴切于T,与y轴交于B,C两点,由切割线定理有:
\[OT^2=OA \cdot OB=OE^2\Rightarrow AE\cdot DB=DA\cdot EB.\]

亦是说:B,E,A,D为调和点列,(进一步,则有:NB,NE,NA,ND为调和线束)。(这句话从高等几何上 说,表达不严谨,但就是这个意思大家明白就好)

而$EN\perp ND$,所以EN与ND分别为$\angle BNA$内,外角分线,故:\[\frac {NA}{NB}=\frac {AE}{EB}.\]

同样的,对M点亦有:\[\frac {MA}{MB}=\frac {AE}{EB}.\]

也就是说:\[\frac {NA}{NB}=\frac {MA}{MB}.\]

这样①是对的。

再结合第一问的,可以算出后两个也是对的。

故答案是:① ② ③ .

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2015-6-11 19:05
与阿氏圆有关,内角平分线定理和外角是平分线定理构造调和点列的一种手段(还有完全四点形(什么塞瓦、美丽老师定理等)、圆锥曲线例如椭圆等会出现调和点列),记忆方法:内分线段比和外分线段比成相反数。

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted 2015-6-11 19:40
题目有没有问题?点A是圆C与Y轴的一个交点,过A的直线还要与圆C相交于M、N两点?

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2015-6-11 22:46
Last edited by isee 2015-6-11 22:57回复 4# 活着&存在


    这个属于个人录入错误,sorry.

   主楼已经更改。

    其图片题如下:
hbl14-o.png

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2015-6-12 01:02
这样的题让考生在高考场上作,出题者扯淡!

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2015-6-12 06:36
回复 2# isee
如果$NE$是$\angle ANB$的平分线,那$ME$也是$\angle AMB$的平分线,$E$就是内心了,这样$BE$就平分$\angle MBN$,省去了计算了。

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted 2015-6-12 10:06
Last edited by 活着&存在 2015-6-12 12:43回复 6# 乌贼


    把竞赛题或者研究题放入普通高考卷(不是1B卷),出卷子的在秀。

然而人家却说是回归课本,因为课本有对应的例题和练习。

未命名.JPG

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2015-6-12 14:03
回复 6# 乌贼

别这么偏激呀,这是几何法,非解析几何法啊,问题的不同方面……

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2015-6-12 20:55
回复  乌贼


    把竞赛题或者研究题放入普通高考卷(不是1B卷),出卷子的在秀。

然而人家却说是回归课 ...
活着&存在 发表于 2015-6-12 10:06
这个相对就容易多了。


c-t.png



PK直线交圆O于另一点于B(若B与K重合,虽然成立),在如图的情况下,则

\[PH\cdot PO=PA^2=PK\cdot PB\Rightarrow \frac {PH}{PK}=\frac {PB}{PO}.\]

又 \[\angle HPK=\angle BPO.\]

于是\[\triangle PHK \sim PBO\Rightarrow \frac {PK}{KH}=\frac{PO}{OB}=\frac {PO}{AO}=\frac {PA}{AH}.\]

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted 2015-6-12 21:26
回复 10# isee


    那考题考的就是这个,而且不用几何,只要知道结论就可以,用代数更容易证,
前提就是课本题目(圆)。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2015-6-13 00:12
回复 8# 活着&存在
我没看出两者关联

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted 2015-6-13 08:33
回复 12# 乌贼


    考试题目中,过A作Y轴的垂线与单位圆相交于点H,然后计算证明BH与OH垂直就可以了。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2015-6-13 10:45
回复  活着&存在
我没看出两者关联
乌贼 发表于 2015-6-13 00:12

    往深处说,就是极线与极点……其实就是这个了。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2015-6-13 18:12
这样的题让考生在高考场上作,出题者扯淡!
乌贼 发表于 2015-6-12 01:02

    初等方法来了:yddy11@人教论坛 4楼:

bbs.pep.com.cn/forum.php?mod=viewthread&t … 986&extra=page=1






    不过,第1个,无须数字计算的,\[ON^2=OT^2=OA\cdot OB=OM^2\Rightarrow \angle OBN=\angle ONM=\angle OMN=\angle OBM.\]

   从而BA是角分线,得到第1个成立。(横向看第1个,分子比分比,分母比分母。)

   不过,此法,第2与3又要麻烦些了,因为比值是多少,个人觉得,要借助解几或者阿氏圆来解决。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2015-6-13 20:04
回复 15# isee
我也看到了

460

Threads

952

Posts

9848

Credits

Credits
9848

Show all posts

青青子衿 Posted 2015-7-25 16:34
回复 3# 其妙
与阿氏圆有关,内角平分线定理和外角是平分线定理构造调和点列的一种手段(还有完全四点形(什么塞瓦、美丽 ...
其妙 发表于 2015-6-11 19:05
每日一题[161] 阿波罗尼斯圆(2015年高考数学湖北卷理科数学第14题(填空压轴题)):lanqi.org/everyday/3733/

3158

Threads

7924

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2022-8-8 00:51
Circles of Apollonius
image/svg+xml
A set of Apollonian circles.
Every blue circle intersects every red circle at a right angle, and vice versa. Every red circle passes through the two foci. Every blue circle passes through the two (imaginary) foci.

Indra's Pearls

3158

Threads

7924

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2022-8-8 01:16
P F₂ F₁ d d σ
Geometric interpretation of the bipolar coordinates.
The angle $σ$ is formed by the two foci and the point $P$, whereas $τ$ is the logarithm of the ratio of distances to the foci. The corresponding circles of constant $σ$ and $τ$ are shown in red and blue, respectively, and meet at right angles (magenta box); they are orthogonal.
Bipolar coordinates

Definition

The system is based on two foci $F_1$ and $F_2$. Referring to the figure at right, the $σ$-coordinate of a point $P$ equals the angle $F_1PF_2$, and the $τ$-coordinate equals the natural logarithm of the ratio of the distances $d_1$ and $d_2$: $$ \tau = \ln \frac{d_1}{d_2}.$$ If, in the Cartesian system, the foci are taken to lie at $(−a,0)$ and $(a,0)$, the coordinates of the point $P$ are $$ x = a \ \frac{\sinh \tau}{\cosh \tau - \cos \sigma}, \qquad y = a \ \frac{\sin \sigma}{\cosh \tau - \cos \sigma}. $$ The coordinate $τ$ ranges from $-\infty$ (for points close to $F_1$) to $\infty$ (for points close to $F_2$). The coordinate $σ$ is only defined modulo $2π$, and is best taken to range from $-π$ to $π$, by taking it as the negative of the acute angle $F_1PF_2$ if $P$ is in the lower half plane.

Proof that coordinate system is orthogonal

The equations for $x$ and $y$ can be combined to give $$ x + i y = a i \cot\left( \frac{\sigma + i \tau}{2}\right). $$ This equation shows that $σ$ and $τ$ are the real and imaginary parts of an analytic function of $x+iy$ (with logarithmic branch points at the foci), which in turn proves (by appeal to the general theory of conformal mapping) (the Cauchy-Riemann equations) that these particular curves of $σ$ and $τ$ intersect at right angles, i.e., that the coordinate system is orthogonal.

Reciprocal relations

The passage from the Cartesian coordinates towards the bipolar coordinates can be done via the following formulas: $$ \tau = \frac{1}{2} \ln \frac{(x + a)^2 + y^2}{(x - a)^2 + y^2} $$ and $$ \pi - \sigma = 2 \arctan \frac{2ay}{a^2 - x^2 - y^2 + \sqrt{(a^2 - x^2 - y^2)^2 + 4 a^2 y^2} }. $$ The coordinates also have the identities: $$ \tanh \tau = \frac{2 a x}{x^2 + y^2 + a^2} $$ and $$ \tan \sigma = \frac{2 a y}{x^2 + y^2 - a^2}. $$ which is the limit one would get a $x = 0$ from the definition in the section above. And all the limits look quite ordinary at $x =0$.

Scale factors

To obtain the scale factors for bipolar coordinates, we take the differential of the equation for $x + iy$, which gives $$ dx + i\, dy = \frac{-ia}{\sin^2\bigl(\tfrac{1}{2}(\sigma + i \tau)\bigr)}(d\sigma +i\,d\tau). $$ Multiplying this equation with its complex conjugate yields $$ (dx)^2 + (dy)^2 = \frac{a^2}{\bigl[2\sin\tfrac{1}{2}\bigl(\sigma + i\tau\bigr) \sin\tfrac{1}{2}\bigl(\sigma - i\tau\bigr)\bigr]^2} \bigl((d\sigma)^2 + (d\tau)^2\bigr). $$ Employing the trigonometric identities for products of sines and cosines, we obtain $$ 2\sin\tfrac{1}{2}\bigl(\sigma + i\tau\bigr) \sin\tfrac{1}{2}\bigl(\sigma - i\tau\bigr) = \cos\sigma - \cosh\tau, $$ from which it follows that $$ (dx)^2 + (dy)^2 = \frac{a^2}{(\cosh \tau - \cos\sigma)^2} \bigl((d\sigma)^2 + (d\tau)^2\bigr). $$ Hence the scale factors for $σ$ and $τ$ are equal, and given by $$ h_\sigma = h_\tau = \frac{a}{\cosh \tau - \cos\sigma}. $$ Many results now follow in quick succession from the general formulae for orthogonal coordinates. Thus, the infinitesimal area element equals $$ dA = \frac{a^2}{\left( \cosh \tau - \cos\sigma \right)^2} \, d\sigma\, d\tau, $$ and the Laplacian is given by $$ \nabla^2 \Phi = \frac{1}{a^2} \left( \cosh \tau - \cos\sigma \right)^2 \left( \frac{\partial^2 \Phi}{\partial \sigma^2} + \frac{\partial^2 \Phi}{\partial \tau^2} \right). $$ Expressions for $\nabla f$, $\nabla \cdot \mathbf{F}$, and $\nabla \times \mathbf{F}$ can be expressed obtained by substituting the scale factors into the general formulae found in orthogonal coordinates.

3158

Threads

7924

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2022-8-8 01:53

Apollonius' definition of a circle

Main Article: Circle#Circle of Apollonius
D C B d 2 A d 1 P
Figure 1. Apollonius' definition of a circle.
A circle is usually defined as the set of points P at a given distance \(r\) (the circle's radius) from a given point (the circle's center). However, there are other, equivalent definitions of a circle. Apollonius discovered that a circle could be defined as the set of points P that have a given ratio of distances \(k=\frac{d_1}{d_2}\) to two given points (labeled A and B in Figure 1). These two points are sometimes called the foci.

Proof using vectors in Euclidean spaces

Let $d_1,d_2$ be non-equal positive real numbers. Let C be the internal division point of AB in the ratio $d_1:d_2$ and D the external division point of AB in the same ratio, $d_1:d_2$. $$\overrightarrow{\mathrm{PC}} = \frac{d_{2}\overrightarrow{\mathrm{PA}}+d_{1}\overrightarrow{\mathrm{PB}}}{d_{2}+d_{1}},\ \overrightarrow{\mathrm{PD}} = \frac{d_{2}\overrightarrow{\mathrm{PA}}-d_{1}\overrightarrow{\mathrm{PB}}}{d_{2}-d_{1}}.$$ Then, \begin{aligned} &\mathrm{PA} : \mathrm{PB} = d_{1} : d_{2}. \\ \Leftrightarrow{}& d_{2}|\overrightarrow{\mathrm{PA}}| = d_{1}|\overrightarrow{\mathrm{PB}}|. \\ \Leftrightarrow{}& d_{2}^2|\overrightarrow{\mathrm{PA}}|^2 = d_{1}^2|\overrightarrow{\mathrm{PB}}|^2. \\ \Leftrightarrow{}& (d_{2}\overrightarrow{\mathrm{PA}}+d_{1}\overrightarrow{\mathrm{PB}})\cdot (d_{2}\overrightarrow{\mathrm{PA}}-d_{1}\overrightarrow{\mathrm{PB}})=0. \\ \Leftrightarrow{}& \frac{d_{2}\overrightarrow{\mathrm{PA}}+d_{1}\overrightarrow{\mathrm{PB}}}{d_{2}+d_{1}}\cdot \frac{d_{2}\overrightarrow{\mathrm{PA}}-d_{1}\overrightarrow{\mathrm{PB}}}{d_{2}-d_{1}} = 0. \\ \Leftrightarrow{}& \overrightarrow{\mathrm{PC}} \cdot \overrightarrow{\mathrm{PD}} = 0. \\ \Leftrightarrow{}& \overrightarrow{\mathrm{PC}} = \vec{0} \vee \overrightarrow{\mathrm{PD}} =\vec{0} \vee \overrightarrow{\mathrm{PC}} \perp \overrightarrow{\mathrm{PD}}. \\ \Leftrightarrow{}& \mathrm{P}=\mathrm{C} \vee \mathrm{P}=\mathrm{D} \vee \angle{\mathrm{CPD}}=90^\circ. \end{aligned} Therefore, the point P is on the circle which has the diameter CD.

Proof using the angle bisector theorem

α α α β β β γ γ γ δ δ δ A A A B B B C C C D D D P P P Q Q Q
Proof of Apollonius' definition of a circle
First consider the point \(C\) on the line segment between \(A\) and \(B\), satisfying the ratio. By the definition \(\frac{|AP|}{|BP|}=\frac{|AC|}{|BC|}\) and from the angle bisector theorem the angles \(\alpha=\angle APC\) and \(\beta=\angle CPB\) are equal.

Next take the other point \(D\) on the extended line \(AB\) that satisfies the ratio. So \(\frac{|AP|}{|BP|}=\frac{|AD|}{|BD|}.\) Also take some other point \(Q\) anywhere on the extended line \(AP\). Also by the Angle bisector theorem the line \(PD\) bisects the exterior angle \(\angle QPB\). Hence, \(\gamma=\angle BPD\) and \(\delta=\angle QPD\) are equal and \(\beta+\gamma=90^{\circ}\). Hence by Thales's theorem \(P\) lies on the circle which has \(CD\) as a diameter.

Apollonius pursuit problem

The Apollonius pursuit problem is one of finding whether a ship leaving from one point A at speed \(v_\text{A}\) will intercept another ship leaving a different point B at speed \(v_\text{B}\). The minimum time in interception of the two ships is calculated by means of straight-line paths. If the ships' speeds are held constant, their speed ratio is defined by $μ$. If both ships collide or meet at a future point, \(I\), then the distances of each are related by the equation: \[a = \mu b\] Squaring both sides, we obtain: \[a^{2} = b^{2} \mu^{2}\] \[a^{2} = x^{2} + y^{2}\] \[b^{2} = (d-x)^{2} + y^{2}\] \[x^{2} + y^{2} = [(d-x)^{2} + y^{2}]\mu^{2}\] Expanding: \[x^{2}+y^{2} = [d^{2} + x^{2} - 2dx + y^{2}]\mu^{2}\] Further expansion: \[x^{2} + y^{2} = x^{2} \mu^{2} + y^{2}\mu^{2} + d^{2}\mu^{2} - 2dx \mu^{2}\] Bringing to the left-hand side: \[x^{2} - x^{2}\mu^{2} + y^{2} - y^{2}\mu^{2} - d^{2}\mu^{2} + 2dx\mu^{2} = 0\] Factoring: \[x^{2}(1-\mu^{2}) + y^{2}(1-\mu^{2}) - d^{2}\mu^{2} + 2dx\mu^{2} = 0\] Dividing by \(1-\mu^{2}\) : \[x^{2} + y^{2} - \frac{d^{2}\mu^{2}}{1-\mu^{2}} + \frac{2dx\mu^{2}}{1-\mu^{2}} = 0\] Completing the square: \[\left(x+ \frac{d\mu^{2}}{1-\mu^{2}}\right) ^{2}- \frac{d^{2}\mu^{4}}{(1-\mu^{2})^{2}} - \frac{d^{2} \mu^{2}}{1-\mu^{2}} + y^{2} = 0\] Bring non-squared terms to the right-hand side: \begin{align*} \left( x + \frac{d\mu^{2}}{1-\mu^{2}} \right)^{2} + y^{2} &= \frac{d^{2}\mu^{4}}{(1-\mu^{2})^{2}} + \frac{d^{2} \mu^{2}}{1-\mu^{2}}\\ &= \frac{d^{2} \mu^{4}}{(1-\mu^{2})^{2}} + \frac{d^{2} \mu^{2}}{1-\mu^{2}} \frac{(1-\mu^{2})}{(1-\mu^{2})}\\ &= \frac{d^{2}\mu^{4}+d^{2}\mu^{2}-d^{2}\mu^{4}}{(1-\mu^{2})^{2}}\\ &= \frac{d^{2} \mu^{2}}{(1-\mu^{2})^{2}} \end{align*} Then: \[\left( x + \frac{d\mu^{2}}{1-\mu^{2}}\right)^{2} + y^{2} = \left( \frac{d \mu}{1-\mu^{2}} \right)^{2}\] Therefore, the point must lie on a circle as defined by Apollonius, with their starting points as the foci.

Mobile version|Discuz Math Forum

2025-6-6 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit