Forgot password?
 Register account
View 1811|Reply 6

一道积分题

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2013-10-2 16:43 |Read mode
Last edited by hbghlyj 2025-5-6 21:48圆$A$的圆心$A$为双曲线$xy=1$一分支一点,使圆$A$与$x$,$y$轴都相切,求阴影部分的面积。

(1)求积分区间
设方程 $x y=1$ 与方程 $(x-1)^2+(y-1)^2=1$ 交于 $B, C$ 两点,则
\[
\begin{aligned}
& \left\{\begin{array} { l }
{ x y = 1 } \\
{ ( x - 1 ) ^ { 2 } + ( y - 1 ) ^ { 2 } = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
y=\frac{1}{x} \\
x^2+y^2-2 x-2 y+1=0
\end{array}\right.\right. \\
& \Rightarrow x^2+\frac{1}{x^2}-2 x-\frac{2}{x}+1=0 \\
& \text {令 } x+\frac{1}{x}=t \text {, 则 } x^2+\frac{1}{x^2}=t^2-2
\end{aligned}
\]
$\therefore$ 原方程等价于 $t^2-2 t-1=0$
\[
\begin{aligned}
& \therefore t=1 \pm \sqrt{2} \\
& \therefore x+\frac{1}{x}=1 \pm \sqrt{2} \Rightarrow x^2-(1+\sqrt{2}) x+1=0 \text { 或 } x^2-(1-\sqrt{2}) x+1=0
\end{aligned}
\]
经检验 $x^2-(1-\sqrt{2}) x+1=0$ 无实根,舍去。
\[
\begin{aligned}
& \therefore x^2-(1+\sqrt{2}) x+1=0 \\
& \therefore x=\frac{1+\sqrt{2} \pm \sqrt{2 \sqrt{2}-1}}{2}, y=\frac{2}{1+\sqrt{2} \pm \sqrt{2 \sqrt{2}-1}} \\
& \therefore B\left(\frac{1+\sqrt{2}-\sqrt{2 \sqrt{2}-1}}{2}, \frac{2}{1+\sqrt{2}-\sqrt{2 \sqrt{2}-1}}\right), \\
& C\left(\frac{1+\sqrt{2}+\sqrt{2 \sqrt{2}-1}}{2}, \frac{2}{1+\sqrt{2}+\sqrt{2 \sqrt{2}-1}}\right)
\end{aligned}
\]
(2)定面积元素
\[
\begin{aligned}
& d A_1=\left[\sqrt{-x^2+2 x}-1-\frac{1}{x}\right] d x, x \in\left[\frac{1+\sqrt{2}-\sqrt{2 \sqrt{2}-1}}{2}, \frac{1+\sqrt{2}+\sqrt{2 \sqrt{2}-1}}{2}\right], \\
& d A_2=\left[\sqrt{-x^2+2 x}-1-\left(-\sqrt{-x^2+2 x}-1\right)\right] d x, x \in\left[\frac{1+\sqrt{2}+\sqrt{2 \sqrt{2}-1}}{2}, 2\right]
\end{aligned}
\]
(3)求面积
\[
A=\int_{\frac{1+\sqrt{2}-\sqrt{2 \sqrt{2}-1}}{2}}^{\frac{1+\sqrt{2}+\sqrt{\sqrt{2}-1}}{2}} d A_1+\int_{\frac{1+\sqrt{2}}{2}+\sqrt{2 \sqrt{2}-1}}^2 d A_2=?
\]

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-2 18:20
回复 1# 青青子衿
建议楼主连结$BC$,然后分成弓形的面积和直线$BC$下的$xy=1$上方的面积较好吧??

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-2 23:47
回复 2# 其妙
+1
不过这数据真的不好玩……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-3 17:25
回复 3# kuing
就是,尼玛几个根号有重根号的,

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2013-10-14 06:23
回复 1# 青青子衿

没必要这么暴力吧...
图形是可以旋转的嘛...
整个东西逆时针转45度,圆变成$x^2+(y-\sqrt{2})^2=1$,双曲线变成$y^2-x^2=2$
这个方程组就好解多了嘛,可以得到
\[x_1=-\sqrt{-\frac{1}{2}+\sqrt{2}}, x_2=\sqrt{-\frac{1}{2}+\sqrt{2}}\]
面积为
\[\int_{-\sqrt{-\frac{1}{2}+\sqrt{2}}}^{\sqrt{-\frac{1}{2}+\sqrt{2}}}[\sqrt{1-x^2}+\sqrt{2}-\sqrt{2+x^2}]dx=\sqrt{2\sqrt{2}-1}+arcsin(\sqrt{-\frac{1}{2}+\sqrt{2}})-2arcsh(\frac{\sqrt{2\sqrt{2}-1}}{2})\]

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-14 23:33
回复 5# 战巡
反三角函数前加一个\,会比较好看一点吧
妙不可言,不明其妙,不着一字,各释其妙!

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2013-10-19 11:12
回复  青青子衿

没必要这么暴力吧...
图形是可以旋转的嘛...
战巡 发表于 2013-10-14 06:23
WFGX万分感谢!!
好妙的解法!!

Mobile version|Discuz Math Forum

2025-6-5 01:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit