Forgot password?
 Create new account
View 1620|Reply 6

一道积分题

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-10-2 16:43:29 |Read mode
圆$A$的圆心$A$为双曲线$xy=1$一分支一点,使圆$A$与$x$,$y$轴都相切,求阴影部分的面积。
6a600c338744ebf8b86ef8a8d9f9d72a6059a70e.jpg
d62a6059252dd42a4a9cc43c033b5bb5c8eab894.gif
b58f8c5494eef01f9fccdd52e0fe9925bd317d49.jpg

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-2 18:20:32
回复 1# 青青子衿
建议楼主连结$BC$,然后分成弓形的面积和直线$BC$下的$xy=1$上方的面积较好吧??

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-2 23:47:59
回复 2# 其妙
+1
不过这数据真的不好玩……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-3 17:25:34
回复 3# kuing
就是,尼玛几个根号有重根号的,

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-10-14 06:23:34
回复 1# 青青子衿

没必要这么暴力吧...
图形是可以旋转的嘛...
整个东西逆时针转45度,圆变成$x^2+(y-\sqrt{2})^2=1$,双曲线变成$y^2-x^2=2$
这个方程组就好解多了嘛,可以得到
\[x_1=-\sqrt{-\frac{1}{2}+\sqrt{2}}, x_2=\sqrt{-\frac{1}{2}+\sqrt{2}}\]
面积为
\[\int_{-\sqrt{-\frac{1}{2}+\sqrt{2}}}^{\sqrt{-\frac{1}{2}+\sqrt{2}}}[\sqrt{1-x^2}+\sqrt{2}-\sqrt{2+x^2}]dx=\sqrt{2\sqrt{2}-1}+arcsin(\sqrt{-\frac{1}{2}+\sqrt{2}})-2arcsh(\frac{\sqrt{2\sqrt{2}-1}}{2})\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-14 23:33:11
回复 5# 战巡
反三角函数前加一个\,会比较好看一点吧
妙不可言,不明其妙,不着一字,各释其妙!

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2013-10-19 11:12:12
回复  青青子衿

没必要这么暴力吧...
图形是可以旋转的嘛...
战巡 发表于 2013-10-14 06:23

WFGX万分感谢!!
好妙的解法!!

手机版Mobile version|Leisure Math Forum

2025-4-20 22:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list