Forgot password?
 Register account
View 3403|Reply 9

[不等式] 几个群都在转的不等式

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2015-7-20 22:55 |Read mode
若$ a,b,c\geqslant 0,a+b+c=3.证明:\frac{a}{b^3+16}+\frac{b}{c^3+16}+\frac{c}{a^3+16}\geqslant \frac{1}{6} $

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-7-21 03:54
比想象中容易。
抓住特别的$(0,1,2)$取等条件,再局部切线法就可以了。

首先由
\[\frac1{x^3+16}-\left(\frac1{16}-\frac{x^2}{192}\right)=\frac{x^2(x-2)^2(x+4)}{192(x^3+16)},\]
可知
\[\sum\frac a{b^3+16}\geqslant\sum a\left(\frac1{16}-\frac{b^2}{192}\right)=\frac3{16}-\frac1{192}\sum ab^2,\]
于是只需证
\[\frac3{16}-\frac1{192}\sum ab^2\geqslant\frac16,\]

\[\sum ab^2\leqslant4,\]
这由熟知的
\[ab^2+bc^2+ca^2+abc\leqslant\frac4{27}(a+b+c)^3\]
立得,即得证。

啊,这题要是在当年写《切线法》之前遇到就好了,不错的题材。

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2015-7-21 19:19
回复 2# kuing R9_EVJXRG)T0$F$S)KZ{C`X.png

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-7-21 21:33
回复 3# hjfmhh

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-7-21 22:34
不妨设$a$最大,则$ab^2+bc^2+ca^2\leqslant ab^2+abc+ca^2$

${\kern 125pt}=a[b^2+c(b+a)]$

${\kern 125pt}\leqslant a[\dfrac12(b+a)b+c(b+a)]$

${\kern 125pt}=\dfrac12a[(b+a)(b+2c)]$

${\kern 125pt}\leqslant \dfrac12\left (\dfrac{a+b+a+b+2c}3\right)^3=4$

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2015-7-21 22:47
回复 5# 其妙


    其实排序加均值就可以,另外kuing的$\frac{1}{16}-\frac{x^2}{192}$是待定出来的

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-7-22 17:54
回复 6# hjfmhh
昨晚看见了黄老师发表在数学通讯上面的关于不等式的两篇文章了,黄老师高手哟!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-7-22 22:18
回复 5# 其妙
这里也有:forum.php?mod=viewthread&tid=281

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-7-22 22:23
回复 8# 其妙

擦,咋还扯这个,搞错重点了吧,这题关键就第一步而已,后面的都无足轻重。

1

Threads

9

Posts

56

Credits

Credits
56

Show all posts

周险峰 Posted 2017-5-21 14:42
说好的局部切线法咧!$f(x)=\frac1{x^3+16}$与$g(x)=\frac1{16}-\frac {x^2}{192}$的关系能理解,只是不知道右边的二次函数是怎么搞出来的?
说说我的理解,请k神指导:
1.$f(x)$与$g(x)$在$(0,+\infty)$上有两个交点$(0,\frac1{16})$和$(2,\frac1{24})$;
2.切线是做不到在两个地方放缩的,所以想到二次函数??

Mobile version|Discuz Math Forum

2025-5-31 10:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit