Forgot password?
 Register account
View 2307|Reply 10

[函数] 设△ABC为锐角三角形,证明:4<2(sinA+sinB+sinC)≤3√3。

[Copy link]

2

Threads

1

Posts

17

Credits

Credits
17

Show all posts

retert Posted 2015-8-7 20:34 |Read mode
设△ABC为锐角三角形,证明:4<2(sinA+sinB+sinC)≤3√3。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-8-7 21:01

2

Threads

1

Posts

17

Credits

Credits
17

Show all posts

 Author| retert Posted 2015-8-7 21:14
可以把右边的做出来吗?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-8-7 21:27
\[\sin A+\sin B+\sin C=\sin A+2\cos\frac{B-C}2\sin\frac{B+C}2\le\sin A+2\cos\frac A2,\]
下略

1

Threads

22

Posts

319

Credits

Credits
319

Show all posts

地狱的死灵 Posted 2015-8-7 22:43
回复 3# retert


$\frac{{\sin A + \sin B + \sin C}}{3} \le \sin \frac{{A + B + C}}{3} = \frac{{\sqrt 3 }}{2}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-8-7 23:32
回复 5# 地狱的死灵

右边还要问估计不知道琴生,所以干脆写和差化积给他,估计好接受些

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-8-8 00:49
噢,也不是非要说成琴生,比如这个贴 forum.php?mod=viewthread&tid=2564 里的

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-8-8 15:55
,算了,FQA

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2015-8-10 13:59
回复 8# 其妙
是FAQ

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2015-8-10 14:19
类似地可以证明任意三角形ABC中有$2<\cos(A/2)+\cos(B/2)+\cos(C/2)\leqslant3\sqrt3/2$,见《数学空间》2011第2期(总第2期)P9

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-8-11 13:12
回复 10# 色k
链接

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit