Forgot password
 Register account
View 2211|Reply 6

[几何] 一道几何题

[Copy link]

6

Threads

4

Posts

0

Reputation

Show all posts

king12123 posted 2015-8-26 22:06 |Read mode
QQ图片20150826220524.jpg

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2015-8-27 09:08
与2015年湖北理科第14题好像啊。

forum.php?mod=viewthread&tid=3525

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2015-8-27 12:39
N点多余?

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2015-8-27 19:59
Last edited by abababa 2015-8-27 20:06回复 1# king12123
1.gif
设$AD$是$\odot O$的直径,则$BD\perp AB$,又因为$CH\perp AB$,所以$BD\sslash CH$,同理$CD\sslash BH$,所以四边形$BDCH$是平行四边形
设$DH$交$BC$于$P'$,则$P'$是$BC$的中点,与$P$重合,所以$D,P,H,M$四点共线
因为$\frac{BM\cdot PM\cdot\sin\angle DMB}{2}=S_{\triangle BMP}=S_{\triangle CMP}=\frac{PM\cdot CM\cdot\sin\angle DMC}{2}$,所以$\frac{BM}{CM}=\frac{\sin\angle DMC}{\sin\angle DMB}=\frac{CD/2R}{BD/2R}=\frac{CD}{BD}=\frac{BH}{CH}$

6

Threads

4

Posts

0

Reputation

Show all posts

original poster king12123 posted 2015-8-27 20:41
楼上证明太精彩了。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2015-8-28 12:45
回复  king12123

设$AD$是$\odot O$的直径,则$BD\perp AB$,又因为$CH\perp AB$,所以$BD\sslash CH$, ...
abababa 发表于 2015-8-27 19:59
完全不同高考,原来是竞赛题,用到了顶点到垂心的距离是外心到对边距离的2倍……

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2015-8-28 18:07
回复 6# isee
其实没用到那个结论,只是辅助线的添加方法是一样的。
4楼最后那步如果改成$BM\cdot BD\cdot\sin\angle DBM=2S_{\triangle BDM}=2S_{\triangle CDM}=CM\cdot CD\cdot\sin\angle DCM$,因为$\angle DBM+\angle DCM=180^\circ$,正弦值相等,所以$BM\cdot BD=CM\cdot CD$,显得更简单一点

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-18 10:39 GMT+8

Powered by Discuz!

Processed in 0.015078 seconds, 26 queries