Forgot password
 Register account
View 3195|Reply 12

[几何] 请教一道数学题

[Copy link]

12

Threads

14

Posts

0

Reputation

Show all posts

数学小黄 posted 2013-10-4 15:44 |Read mode
Last edited by hbghlyj 2025-5-10 22:27在长方体 $ABCD$-$A_1B_1C_1D_1$ 中,已知 $AC=1$, $B_1C=\sqrt2$, $AB_1=p$,则长方体的体积最大时,$p$ 为

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-4 16:57
设 $BA=x$, $BC=y$, $BB_1=z$,则 $x^2+y^2=1$, $y^2+z^2=2$, $z^2+x^2=p^2$,故
\[V^2=x^2y^2z^2=\frac{1+p^2-2}2\cdot\frac{1+2-p^2}2\cdot\frac{2+p^2-1}2=\frac{(p^4-1)(3-p^2)}8,\]
其中 $p^2\in(1,3)$,下略。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-4 22:15
那就均值不等式的方法,

12

Threads

14

Posts

0

Reputation

Show all posts

original poster 数学小黄 posted 2013-10-5 09:31
回复 3# 其妙


    请教,怎么用均值不等式啊

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-5 11:58
回复 4# 数学小黄
待定系数之类的

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2013-10-5 15:35
求导得了,快且准

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-5 16:10
回复  数学小黄
待定系数之类的
kuing 发表于 2013-10-5 11:58
嗯,

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-5 16:11
求导得了,快且准
isee 发表于 2013-10-5 15:35
对,

12

Threads

14

Posts

0

Reputation

Show all posts

original poster 数学小黄 posted 2013-10-6 09:14
回复 5# kuing


    能不朦胧吗,呵呵,麻烦秀出来让我们见识一下

10

Threads

26

Posts

0

Reputation

Show all posts

chr93918 posted 2013-10-6 09:45
类似于这样一道题:各项均为正数的等比数列
56e942abgx6CNPVdxAZ81.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-6 13:03
回复 10# chr93918

这道题论坛上也有 forum.php?mod=viewthread&tid=204 均值不用那么麻烦

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-6 13:12
回复  kuing
能不朦胧吗,呵呵,麻烦秀出来让我们见识一下
数学小黄 发表于 2013-10-6 09:14
我还以为说了方法就都会了的,说多了怕罗嗦所以没讲下去,并不是有意“朦胧”你。
待定系数均值,大概就是 $(p^4-1)(3-p^2)=(ap^2+a)(bp^2-b)(3-p^2)/(ab)\leqslant \cdots$,然后自然需要 $a+b=1$,另外结合取等条件 $ap^2+a=bp^2-b=3-p^2$,将 $a$, $b$, $p$ 解出来即可。
“秀”完了,各路高手别笑话我。

12

Threads

14

Posts

0

Reputation

Show all posts

original poster 数学小黄 posted 2013-10-11 08:59
回复 12# kuing


    多谢,明白了,谢谢您

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:46 GMT+8

Powered by Discuz!

Processed in 0.014941 seconds, 25 queries