Forgot password?
 Create new account
View 3019|Reply 12

[几何] 请教一道数学题

[Copy link]

11

Threads

15

Posts

141

Credits

Credits
141

Show all posts

数学小黄 Posted at 2013-10-4 15:44:42 |Read mode
FBC~ZX@3X{C04D@0Z}8EN0O.jpg

_____kuing edit in $\LaTeX$_____
在长方体 $ABCD$-$A_1B_1C_1D_1$ 中,已知 $AC=1$, $B_1C=\sqrt2$, $AB_1=p$,则长方体的体积最大时,$p$ 为

700

Threads

110K

Posts

910K

Credits

Credits
94192
QQ

Show all posts

kuing Posted at 2013-10-4 16:57:44
设 $BA=x$, $BC=y$, $BB_1=z$,则 $x^2+y^2=1$, $y^2+z^2=2$, $z^2+x^2=p^2$,故
\[V^2=x^2y^2z^2=\frac{1+p^2-2}2\cdot\frac{1+2-p^2}2\cdot\frac{2+p^2-1}2=\frac{(p^4-1)(3-p^2)}8,\]
其中 $p^2\in(1,3)$,下略。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-4 22:15:08
那就均值不等式的方法,

11

Threads

15

Posts

141

Credits

Credits
141

Show all posts

 Author| 数学小黄 Posted at 2013-10-5 09:31:56
回复 3# 其妙


    请教,怎么用均值不等式啊

700

Threads

110K

Posts

910K

Credits

Credits
94192
QQ

Show all posts

kuing Posted at 2013-10-5 11:58:58
回复 4# 数学小黄
待定系数之类的

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-10-5 15:35:14
求导得了,快且准

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-5 16:10:47
回复  数学小黄
待定系数之类的
kuing 发表于 2013-10-5 11:58

嗯,

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-5 16:11:07
求导得了,快且准
isee 发表于 2013-10-5 15:35

对,

11

Threads

15

Posts

141

Credits

Credits
141

Show all posts

 Author| 数学小黄 Posted at 2013-10-6 09:14:24
回复 5# kuing


    能不朦胧吗,呵呵,麻烦秀出来让我们见识一下

8

Threads

28

Posts

197

Credits

Credits
197

Show all posts

chr93918 Posted at 2013-10-6 09:45:23
类似于这样一道题:各项均为正数的等比数列
56e942abgx6CNPVdxAZ81.jpg

700

Threads

110K

Posts

910K

Credits

Credits
94192
QQ

Show all posts

kuing Posted at 2013-10-6 13:03:35
回复 10# chr93918

这道题论坛上也有 kuing.cjhb.site/forum.php?mod=viewthread&tid=204 均值不用那么麻烦

700

Threads

110K

Posts

910K

Credits

Credits
94192
QQ

Show all posts

kuing Posted at 2013-10-6 13:12:37
回复  kuing
能不朦胧吗,呵呵,麻烦秀出来让我们见识一下
数学小黄 发表于 2013-10-6 09:14

我还以为说了方法就都会了的,说多了怕罗嗦所以没讲下去,并不是有意“朦胧”你。
待定系数均值,大概就是 $(p^4-1)(3-p^2)=(ap^2+a)(bp^2-b)(3-p^2)/(ab)\leqslant \cdots$,然后自然需要 $a+b=1$,另外结合取等条件 $ap^2+a=bp^2-b=3-p^2$,将 $a$, $b$, $p$ 解出来即可。
“秀”完了,各路高手别笑话我。

11

Threads

15

Posts

141

Credits

Credits
141

Show all posts

 Author| 数学小黄 Posted at 2013-10-11 08:59:36
回复 12# kuing


    多谢,明白了,谢谢您

手机版Mobile version|Leisure Math Forum

2025-4-21 22:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list