Forgot password?
 Register account
View 2640|Reply 2

[函数] 你有更简单的方法解答它吗?

[Copy link]

12

Threads

14

Posts

141

Credits

Credits
141

Show all posts

数学小黄 Posted 2013-10-5 09:29 |Read mode
Last edited by hbghlyj 2025-5-10 22:23已知椭圆 $\frac{x^2}{4}+y^2=1$, $P$ 是圆 $x^2+y^2=16$ 上任意一点,过 $P$ 点作椭圆的切线 $P A, P B$,切点分别为 $A, B$,求 $\overrightarrow{P A} \cdot \overrightarrow{P B}$ 的最大值和最小值.

12

Threads

14

Posts

141

Credits

Credits
141

Show all posts

 Author| 数学小黄 Posted 2013-10-5 09:29
Last edited by hbghlyj 2025-5-10 22:26解:设点 $P(m, n), A(x_1, y_1), B(x_2, y_2)$,则切䇅 $P A: \frac{x_1 x}{4}+y_1 y=1, P B: \frac{x_2 x}{4}+y_2 y=1$,因为切线 $P A, P B$ 都过点 $P$ ,所以有 $\frac{x_1 m}{4}+y_1 n=1$ 和 $\frac{x_2 m}{4}+y_2 n=1$ 同时成立,于是直线 $A B$ 的方程:$\frac{m x}{4}+m y=1$
联立直线 $A B$ 和椭圆组成的方程组
\[
\left\{\begin{array}{l}
\frac{x^2}{4}+y^2=1 \\
\frac{m}{4} x+m y=1
\end{array} \text {, 消去 } y \text { 得: }\left(4 n^2+m^2\right) x^2-8 m x+\left(16-16 n^2\right)=0\right.
\]
所以 $x_1+x_2=\frac{8 m}{4 n^2+m^2}, x_1 x_2=\frac{16-16 n^2}{4 n^2+m^2}$ ,
\[
\Delta=64 m^2-4\left(4 n^2+m^2\right)\left(16-16 n^2\right)=64 n^2\left(m^2+4 n^2-4\right)
\]
又根据 $\frac{m x}{4}+n y=1$ 得:
\[
y_1 y_2=\frac{4-m x_1}{4 n} \cdot \frac{4-m x_2}{4 n}=\frac{4-m^2}{\left(4 n^2+m^2\right)} \cdot\left(y_1+y_2\right) n=2-\frac{m\left(x_1+x_2\right)}{4}=\frac{8 n^2}{4 n^2+m^2}
\]于是
\[
\begin{aligned}
& \overrightarrow{P A} \cdot \overrightarrow{P B}=\left(x_1-m, y_1-n\right) \cdot\left(x_2-m, y_2-n\right)=x_1 x_2-\left(x_1+x_2\right) m+m^2+y_1 y_2-\left(y_1+y_2\right) n+n^2 \\
& =\frac{20-3 m^2}{4 n^2+m^2}+m^2+n^2-6
\end{aligned}
\]
因为 $m^2+n^2=16$ ,所以 $m^2=16-n^2$ ,代入上式得;
$\overrightarrow{P A} \cdot \overrightarrow{P B}=11-\frac{44}{3 n^2+16}$,又因为 $0 \leq n^2 \leq 16$,所以 $n^2=0, m^2=16$ ,即点 $P( \pm 4,0)$ 时, $\overrightarrow{P A} \cdot \overrightarrow{P B}$ 有最小值 $\frac{33}{4}$ ,当 $n^2=16, m^2=0$ ,即点 $P(0, \pm 4)$ 时, $\overrightarrow{P A} \cdot \overrightarrow{P B}$ 有最大值 $\frac{165}{16}$

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-5 16:15
看来还比较容易猜到最值,就是那四个极端位置。
切点弦方程是一个结论,
用圆的参数方程呢?

Mobile version|Discuz Math Forum

2025-6-6 02:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit