Forgot password?
 Register account
View 1948|Reply 0

[不等式] 发下以前解的,用cauchy

[Copy link]

413

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2015-11-4 16:17 |Read mode
Last edited by realnumber 2015-11-4 23:24快看不懂了,重发保留下
bbs.pep.com.cn/forum.php?mod=viewthread&t … 313&extra=page=8
$x_i\in R^+,i=1,2,3,...,n,$
\[ prove \sqrt{\frac{1}{x_1}+\frac{1}{x_2}+\cdots++\frac{1}{x_n}}>\frac{1}{1+x_1}+\frac{1}{1+x_1+x_2}+\cdots +\frac{1}{1+x_1+\cdots+x_n}.\]


由cauchy不等式,下式成立
\[(\frac{x_1}{(1+x_1)^2}+\frac{x_2}{(1+x_1+x_2)^2}+\cdots +\frac{x_n}{(1+x_1+\cdots+x_n)^2})(\frac{1}{x_1}+\frac{1}{x_2}+\cdots++\frac{1}{x_n})\ge (\frac{1}{1+x_1}+\frac{1}{1+x_1+x_2}+\cdots +\frac{1}{1+x_1+\cdots+x_n})^2\]
要证明原题成立,只需要证明
\[\frac{x_1}{(1+x_1)^2}+\frac{x_2}{(1+x_1+x_2)^2}+\cdots +\frac{x_n}{(1+x_1+\cdots+x_n)^2}\le 1\]

\[又 \frac{x_i}{(1+x_1+\cdots+x_i)^2}<\frac{1}{1+x_1+\cdots +x_{i-1}}-\frac{1}{1+x_1+\cdots +x_i}, i=2,3,\cdots ,n\]
完.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 07:03 GMT+8

Powered by Discuz!

Processed in 0.013658 second(s), 22 queries

× Quick Reply To Top Edit