Forgot password?
 Register account
View 1232|Reply 2

偏导数

[Copy link]

6

Threads

7

Posts

73

Credits

Credits
73

Show all posts

hjnk900 Posted 2015-11-18 01:08 |Read mode
令  $ f: \mathbb R^2\to \mathbb R $,假设 $ f $ 的二阶偏导数存在,并且在 $ A\subset\mathbb R^2 $ 上连续.
1)令 $ a\in A $, 证明 \[ D_{1,2}f(a)=D_{2,1}f(a) \]
2)将结论推广到 $ f: \mathbb R^n\to \mathbb R $

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2015-11-18 02:29
回复 1# hjnk900


拜托你别在把偏导符号打成D了,\partial $\to \partial$
还有这不是个基础问题么?自己去看数分教材绝对有讲

\[\frac{\partial^2f(a_1,a_2)}{\partial a_1\partial a_2}=\frac{\partial}{\partial a_2}\lim_{\Delta a_1\to 0}\frac{f(a_1+\Delta a_1,a_2)-f(a_1,a_2)}{\Delta a_1}\]
\[=\lim_{\Delta a_2\to 0}\lim_{\Delta a_1\to 0}\frac{\frac{f(a_1+\Delta a_1,a_2+\Delta a_2)-f(a_1,a_2+\Delta a_2)}{\Delta a_1}-\frac{f(a_1+\Delta a_1,a_2)-f(a_1,a_2)}{\Delta a_1}}{\Delta a_2}\]
\[=\lim_{\Delta a_2\to 0}\lim_{\Delta a_1\to 0}\frac{f(a_1+\Delta a_1,a_2+\Delta a_2)-f(a_1,a_2+\Delta a_2)-f(a_1+\Delta a_1,a_2)+f(a_1,a_2)}{\Delta a_1\Delta a_2}\]
同理可证
\[\frac{\partial^2f(a_1,a_2)}{\partial a_2\partial a_1}=\lim_{\Delta a_2\to 0}\lim_{\Delta a_1\to 0}\frac{f(a_1+\Delta a_1,a_2+\Delta a_2)-f(a_1,a_2+\Delta a_2)-f(a_1+\Delta a_1,a_2)+f(a_1,a_2)}{\Delta a_1\Delta a_2}\]

第二问以此类推

6

Threads

7

Posts

73

Credits

Credits
73

Show all posts

 Author| hjnk900 Posted 2015-11-18 10:11
回复 2# 战巡

首先感谢战巡大哥的回复!

我写的D是表示微分算子.  我又网上搜索了下,发现这道题1)原来是Schwarz定理的内容. 网上搜索了下证明,跟你的方法类似!可是用这种方法推广到n维的话会不会比较麻烦... 请问你有没有其他方法可以证明?网上有人提示说可以利用Fubini's定理,可是我还是没有头绪.

Mobile version|Discuz Math Forum

2025-6-5 02:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit