Forgot password?
 Register account
View 2568|Reply 8

[数列] 请教一道数列题

[Copy link]

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

史嘉 Posted 2013-10-6 14:05 |Read mode
已知数列a1=1,且a(2k)=a(2k-1)+(-1)^k,    a(2k+1)=a(2k)+3^k,
其中 k=1,2,3.。。。。。
求an
谢谢!

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-6 14:16
$a_{2k}=a_{2k-1}+(-1)^k$
$a_{2k+1}=a_{2k}+3^k$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-6 14:17
$a_{2k+1}=a_{2k}+3^k=a_{2k-1}+(-1)^k+3^k$
求和就好了吧,奇数项有了自然偶数项也有了

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-6 14:22
回复 3# kuing


    还需要讨论奇偶吧。
谢谢!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-6 14:37
回复 4# 史嘉
\begin{align*}
a_{2k+1}&=a_{2k-1}+(-1)^k+3^k,\\
a_{2k-1}&=a_{2k-3}+(-1)^{k-1}+3^{k-1},\\
\cdots&\cdots\\
a_3&=a_1+(-1)^1+3^1,
\end{align*}
求和即得
\[a_{2k+1}=a_1+\frac{(-1)\bigl(1-(-1)^k\bigr)}{1-(-1)}+\frac{3(1-3^k)}{1-3}=-1+\frac{(-1)^k+3^{k+1}}2,\]

\[a_{2k}=a_{2k-1}+(-1)^k =-1+\frac{(-1)^{k-1}+3^k}2+(-1)^k.\]

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-6 17:11
回复 5# kuing
$a_{2k}$的表达式中的$(-1)^k$和$(-1)^{k-1}$可以合并,

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-6 17:15
回复 6# 其妙

嗯,我懒了。
还可以统一写成一条式,不过还是懒了。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-6 17:25
回复 7# kuing
,统一起来本题麻烦了些,未统一之前就有很多$(-1)^k$了统一后就更多了$(-1)^n$、$(-1)^{\frac{n}2}$,$(-1)^{\frac{n-1}2}$,$(-1)^{\frac{n+1}2}$、$3^{\frac{n}2}$,等等了。总之,是可以统一的。

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-6 22:57
谢谢两位!
我以被4除分成四段表示的。

Mobile version|Discuz Math Forum

2025-6-6 03:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit