Forgot password?
 Register account
View 1622|Reply 4

一道空间向量题

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2013-10-7 09:36 |Read mode
在空间直角坐标系中,能否在球面$x^2+y^2+z^2=1$找到相异且不共面的五点$A,B,C,D,E$,使得$\vv{OA}+\vv{OB}+\vv{OC}+\vv{OD}+\vv{OE}=\vv{0}$,且五个向量中的任意一个与其他四个向量的向量和为$\vv{0}$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-7 16:22
在空间直角坐标系中,能否在球面$x^2+y^2+z^2=1$找到相异且不共面的五点$A,B,C,D,E$,使得$\vv{OA}+\vv{OB}+\vv{OC}+\vv{OD}+\vv{OE}=\vv{0}$,且五个向量中的任意一个与其他四个向量的向量和为$\vv{0}$

青青子衿 发表于 2013-10-7 09:36
“且五个向量中的任意一个与其他四个向量的向量和为$\vv{0}$” ?难道这跟前一句不是一样的吗?

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2013-10-7 17:03
“且五个向量中的任意一个与其他四个向量的向量和为$\vv{0}$” ?难道这跟前一句不是一样的吗? ...
kuing 发表于 2013-10-7 16:22
的确是这样,但题目就是这么累述的!

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-8 19:34
回复 3# 青青子衿
这个不好理解啊!
拍照看看?
有图有真相!
妙不可言,不明其妙,不着一字,各释其妙!

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-2-26 23:02
$$A=(0,0,1),B=(0,0,-1),C=(1,0,0),D=(\cos\frac{2\pi}3,\sin\frac{2\pi}3,0),E=(\cos\frac{4\pi}3,\sin\frac{4\pi}3,0)$$

Mobile version|Discuz Math Forum

2025-6-5 07:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit