Forgot password
 Register account
View 2136|Reply 12

[函数] 一个函数问题

[Copy link]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2016-1-17 17:00 |Read mode
g(x)=bx^2-3x+2ln2(b不是0),f(x)=(x-2)^2,1<x≤3时,g(x)>f(x)恒有解,求b的取值范围.
解答:g(x)>f(x)恒有解,有g(x)>f(x)的最小值,故g(x)>0.......可以否?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-1-17 17:16
显然不可啊

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2016-1-17 17:36
docin.com/p-211421616.html
这是珠海2011的5月题啊!!!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-1-17 17:55
g(x)>f(x)恒有解 顶多能推出 存在 x0 使 $g(x_0)>f(x)_{\min}$,照这样推下去得出来的也是一个必要条件,都未必能满足充分性

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2016-1-17 18:17
强大。

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2016-1-18 13:25
未命名.JPG

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2016-1-18 13:45
回复 6# 游客
回复 6# 游客
完全赞同你的看法。首先这个恒字让人费解,一般很少这样的说法,应该是针对b的范围任意一个实数,存在x。你的解法OK!标答的解法有点Naive啊!!!

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2016-1-18 13:47
回复 7# 敬畏数学
哎!严重误导啊,命题人慎思啊!

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2016-1-18 13:48
有知情人士,请出来澄清一下!貌似看到经常有这样外行的术语出现,。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-1-18 13:58
命题的渣,写答案的更渣。
其实写成“求b的范围使得g(x)>f(x)在[1,3]上有解”就可以了

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2016-1-18 14:11
回复 1# 敬畏数学
是不是就是在区间$(1,3]$上,$g(x)$的最小值大于$f(x)$的最大值?

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2016-1-18 14:27
回复 11# abababa
俺不晓得哦。。。嘻嘻。。。。up to you.

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2016-1-18 14:29
回复 10# kuing
这样我就高兴了。太清楚了,轻松。。。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:13 GMT+8

Powered by Discuz!

Processed in 0.015612 seconds, 25 queries