Forgot password
 Register account
View 2093|Reply 1

[函数] 二次函数,求 $\abs{cx^2-bx+a}$ 的最大值

[Copy link]

206

Threads

264

Posts

1

Reputation

Show all posts

hjfmhh posted 2016-3-7 15:50 |Read mode
0(65AWN1WUM4E}KV]BTQC[7.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-3-8 02:59
依题意得
\begin{align*}
g(x)&=\left| \frac{1-x}2f(1)+\frac{1+x}2f(-1)+(x^2-1)f(0) \right| \\
& \leqslant \left| \frac{1-x}2f(1) \right|+\left| \frac{1+x}2f(-1) \right|+\abs{(x^2-1)f(0)} \\
& \leqslant \left| \frac{1-x}2 \right|+\left| \frac{1+x}2 \right|+\abs{x^2-1} \\
& =2-x^2 \\
& \leqslant 2,
\end{align*}
当 $f(x)=2x^2-1$ 时满足条件,并且此时 $g(x)=\abs{-x^2+2}=2-x^2$ 确实能取得最大值 $2$。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:12 GMT+8

Powered by Discuz!

Processed in 0.013685 seconds, 25 queries