Forgot password?
 Create new account
View 1043|Reply 1

傻傻的问个积分

[Copy link]

54

Threads

162

Posts

1243

Credits

Credits
1243

Show all posts

血狼王 Posted at 2016-4-9 01:51:47 |Read mode

$$\int_{0}^{\infty}\int_{0}^{\infty}\int_{0}^{\infty}e^{-(xy+yz+zx)}\rmd x\rmd y\rmd z$$
的值。

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2016-4-9 06:44:53
回复 1# 血狼王

换个元就完了嘛

令$xy=p,yz=q,xz=r$,有
\[x=\sqrt{\frac{pr}{q}},y=\sqrt{\frac{pq}{r}},z=\sqrt{\frac{qr}{p}}\]
\[|J|=\begin{vmatrix}\frac{r}{2q}\sqrt{\frac{q}{pr}}&& -\frac{pr}{2q^2}\sqrt{\frac{q}{pr}} && \frac{p}{2q}\sqrt{\frac{q}{pr}}\\\frac{q}{2r}\sqrt{\frac{r}{pq}}&& -\frac{p}{2r}\sqrt{\frac{r}{pq}} && \frac{pq}{2r^2}\sqrt{\frac{r}{pq}}\\\frac{qr}{2p^2}\sqrt{\frac{p}{qr}}&& -\frac{r}{2p}\sqrt{\frac{p}{qr}} && \frac{q}{2p}\sqrt{\frac{p}{qr}}\end{vmatrix}=\frac{1}{2\sqrt{pqr}}\]
\[\int_0^{+\infty}\int_0^{+\infty}\int_0^{+\infty}e^{-(xy+yz+xz)}dxdydz=\int_0^{+\infty}\int_0^{+\infty}\int_0^{+\infty}e^{-(p+q+r)}|J|dpdqdr\]
\[=\frac{1}{2}\int_0^{+\infty}p^{-\frac{1}{2}}e^{-p}dp\int_0^{+\infty}q^{-\frac{1}{2}}e^{-q}dq\int_0^{+\infty}r^{-\frac{1}{2}}e^{-r}dr=\frac{1}{2}\Gamma(\frac{1}{2})^3=\frac{\pi^{\frac{3}{2}}}{2}\]

手机版Mobile version|Leisure Math Forum

2025-4-21 01:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list