Forgot password?
 Create new account
View 1501|Reply 4

这里开始研究古怪的级数……

[Copy link]

54

Threads

162

Posts

1243

Credits

Credits
1243

Show all posts

血狼王 Posted at 2016-4-11 12:38:35 |Read mode
我以前手贱去写代码估算这两个东西:
$$S_n=-\underset{x\in [0,2\pi)}{\min} \sum_{k=1}^{n} \sin(k^2x)$$
$$C_n=-\underset{x\in [0,2\pi)}{\min} \sum_{k=1}^{n} \cos(k^2x)$$
算了十几个后,除了知道这两个东西大致与$n$同阶,就没有什么成果了。
现在转而考虑这样的级数:
$$\sum_{k=1}^{n} \frac{\sin(k^2x)}{k^\alpha}$$
$$\sum_{k=1}^{n} \frac{\sin(k^2x)}{k^\alpha}$$
问题是:
当$\alpha$分别满足什么条件时,这两个级数分别收敛呢?
猜测$\alpha=1$不符合,不知道对不对。

54

Threads

162

Posts

1243

Credits

Credits
1243

Show all posts

 Author| 血狼王 Posted at 2016-6-16 02:31:21
另一个问题:
$$\sum_{p为素数}^{2\leq p\leq N} \ln p$$
的阶到底是什么?($N$为趋于无穷大的正整数)
我猜测是$O(N)$(编代码模拟过了),可是找不到前人的证明,不知道是不是。

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2021-1-13 17:04:55
Last edited by Czhang271828 at 2021-1-13 20:09:00
另一个问题:
$$\sum_{p为素数}^{2\leq p\leq N} \ln p$$
的阶到底是什么?($N$为趋于无穷大的正整数)
我 ...
血狼王 发表于 2016-6-16 02:31
这是素数定理的等价表述,你描述的猜想就是$\displaystyle{\limsup_{x\to\infty}\dfrac{\vartheta(x)}{x}<\infty}$。

最近给刚做过报告,silde里证明了$\lim_{x\to\infty}\dfrac{\vartheta(x)}{x}=1$,证明涉及单复变函数的基本知识。

————————
由于涉及个人信息,只发了初稿,但证明思路已经很完整了。
————————
二更:新链接
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

54

Threads

162

Posts

1243

Credits

Credits
1243

Show all posts

 Author| 血狼王 Posted at 2021-1-31 11:14:22
回复 3# Czhang271828

多谢回复。
意思是,那个和跟N是渐近相等的?
我明白了

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2021-1-31 20:30:36
回复 4# 血狼王

对。现有结论包括Pierre Dusart给出的结果:$\dfrac{\vartheta(x)-x}{x}=O(\log^{-2}(x))$。链接
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list