Forgot password?
 Create new account
View 1702|Reply 5

这个级数如何计算?

[Copy link]

17

Threads

25

Posts

326

Credits

Credits
326

Show all posts

dim Posted at 2016-5-11 00:11:55 |Read mode
级数.png 我的两种思路如上。似乎这种级数还可以推广到奇数次?求大神指教,谢谢!

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2016-5-11 02:17:09
回复 1# dim


令$f(x)=x^3,-\pi\le x\le \pi$
对$f(x)$傅里叶展开得到
\[f(x)=\sum_{k=1}^{\infty}\frac{\sin(kx)}{\pi}\int_{-\pi}^{\pi}t^3\sin(kt)dt=\sum_{k=1}^{\infty}(\frac{12}{k^3}-\frac{2\pi^2}{k})(-1)^{k}\sin(kx)\]
带入$x=\frac{\pi}{2}$,有
\[\frac{\pi^3}{8}=\sum_{k=1}^{\infty}(\frac{12}{k^3}-\frac{2\pi^2}{k})(-1)^{k}\sin(\frac{k\pi}{2})=\sum_{k=1}^{\infty}(-1)^{k}(\frac{12}{(2k-1)^3}-\frac{2\pi^2}{2k-1})=\sum_{k=1}^{\infty}(-1)^{k}\frac{12}{(2k-1)^3}+\frac{\pi^3}{2}\]
\[\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{(2k-1)^3}=\frac{1}{12}(\frac{\pi^3}{2}-\frac{\pi^3}{8})=\frac{\pi^3}{32}\]

17

Threads

25

Posts

326

Credits

Credits
326

Show all posts

 Author| dim Posted at 2016-5-11 23:32:41
回复 2# 战巡


    谢谢大神!还没学傅里叶,以后回头看。我想知道我的方法行得通吗

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2016-5-12 02:12:33
回复 3# dim


第一种我没试过,可能可行

第二种是不行的,这是耍赖,虽然当年欧拉用过类似的方法来证明$\zeta(2)=\frac{\pi^2}{6}$,但严格来讲是耍流氓,非常不严谨

这一类级数的很多都可以由自傅里叶级数得出

17

Threads

25

Posts

326

Credits

Credits
326

Show all posts

 Author| dim Posted at 2016-5-12 23:39:35
回复 4# 战巡


    好的,知道了,谢谢你!

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2018-7-10 13:50:28
我的两种思路如上。似乎这种级数还可以推广到奇数次?求大神指教,谢谢! ...
dim 发表于 2016-5-11 00:11

有挺多方法的
tieba.baidu.com/p/4428450841

手机版Mobile version|Leisure Math Forum

2025-4-21 01:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list