Forgot password?
 Register account
View 1902|Reply 14

二重积分计算面积

[Copy link]

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

dodonaomik Posted 2016-6-27 12:49 |Read mode
Last edited by hbghlyj 2025-3-31 00:25计算 $\iint_D\left(\frac{y}{x}\right)^2, D$ 乃是 $y=x, y=3 x, x y=1, x y=5$ 围成之第一象限区域
1111.jpg

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

 Author| dodonaomik Posted 2016-6-27 12:59
能不能,不用雅克比积分,
而用“平常的积分方法”来计算?

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2016-6-27 15:58
回复 2# dodonaomik


当然可以啊,不过你就得算好积分的上下限,分成多段慢慢处理

这个问题最简单就是换元$u=\frac{y}{x},v=xy$
其次是格林公式,分为4段逐段积分

直接重积分是最笨的办法

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

 Author| dodonaomik Posted 2016-6-27 16:39
чшучшу


谢谢老战!

呵呵,这么多方法~~~我还真不晓得,有这么多!


从我个性出发,我最喜欢最愚笨的直接重积分

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

 Author| dodonaomik Posted 2016-6-28 08:53
为什么,我计算出来的结果,

是8,
而不是-8?



我错在哪里?
7772.jpg

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2016-6-28 09:59
回复 5# dodonaomik


8没错的啊,为毛会算出-8?对一个恒正的函数积分怎么可能积出负的来?你不会是雅可比式漏了绝对值吧?

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

 Author| dodonaomik Posted 2016-6-28 13:11
回复 6# 战巡


    谢谢,谢谢!我靠,那应该是的!应该是漏了绝对值,给雅克比,还要
套一个
绝对值!
7771.jpg

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

 Author| dodonaomik Posted 2016-7-5 21:10
Last edited by hbghlyj 2025-3-31 00:32这是书上的解答!

结果就是-8,现在想想,我也不晓得为什么
计算 $\iint_D\left(\frac{y}{x}\right)^2, D$ 乃是 $y=x, y=3 x, x y=1, x y=5$ 围成之第一象限区域
Solution:
\[
\begin{aligned}
& \left\{\begin{array}{l}
\frac{y}{x}=u \\
x y=v
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
x=\sqrt{\frac{v}{u}} \\
y=\sqrt{u v}
\end{array} \right.\Rightarrow\binom{d x}{d y}=\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\partial v & \frac{\partial v}{\partial x} \\
\partial x & \partial y
\end{array}\right]\left[\begin{array}{l}
d u \\
d v
\end{array}\right]=\left[\begin{array}{ll}
\frac{-1}{2 u} \sqrt{\frac{v}{u}} & \frac{1}{2 \sqrt{u v}} \\
\frac{1}{2} \sqrt{\frac{v}{u}} & \frac{1}{2} \sqrt{\frac{u}{v}}
\end{array}\right]\binom{d u}{d v} \\
& \Rightarrow \text { Jacobian determinant }=|J|=\left|\begin{array}{ll}
\frac{-1}{2 u} \sqrt{\frac{v}{u}} & \frac{1}{2 \sqrt{u v}} \\
\frac{1}{2} \sqrt{\frac{v}{u}} & \frac{1}{2} \sqrt{\frac{u}{v}}\end{array}\right|  =\frac{1}{-2 u}
\end{aligned}
\]
It's obvious that: $1 \leq u \leq 3,1 \leq v \leq 5$\begin{aligned}
& \Rightarrow \iint_D\left(\frac{y}{x}\right)^2=\iint_{D^{\prime}} \left[\frac{y(u, v)}{x(u, v)}\right]^2 \cdot|J| \cdot d u \cdot d v \\
& =\iint_{D^{\prime}} u^2\left(\frac{1}{-2 u}\right) d u \bullet d v \\
& =-\int_1^3 \frac{u d u}{2} \int_1^5 d v \\
& =-8
\end{aligned}

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2016-7-6 01:31
回复 8# dodonaomik

就是明显漏算绝对值嘛,下面明明都打出来$|J|$了可竟然还是没算

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

 Author| dodonaomik Posted 2016-7-7 06:49
回复  dodonaomik

就是明显漏算绝对值嘛,下面明明都打出来$|J|$了可竟然还是没算 ...
战巡 发表于 2016-7-6 01:31
【原书作者:谢广千】

回到原书看了一哈!
这个,原作者是绝对不会搞错的~~作者好像是西安电子出来的一个工科老毕业生吧,这点常识他是绝对有的!


J两边的竖线,绝对不是【绝对值符号】,
绝对是【行列式determinant】的符号

——————————————————————————————————————
这个,
【战巡】你肯定错啦

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

 Author| dodonaomik Posted 2016-7-7 07:11
曲线上,随着u的增大,
点会向上移动,

过点的切线,顺时针转动,
该点的另外一根切线方向不变,


推出du,dv的夹角变小啦,
导致积分微元的面积也变小啦,
即|J|的绝对值变小啦
71_131622_e1c91079436c756.jpg

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

 Author| dodonaomik Posted 2016-7-7 07:13
上楼,是原书作者的解释~~~我看的迷迷糊糊!但是我估计,
大致说得通吧!

可能就是工科研究生课程《矩阵论》里的内容?

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2016-7-8 13:37
回复 11# dodonaomik


你这人真是搞笑

我不说别的,就问你一句:恒正的函数积分怎么可能积出负的来?

至于雅可比式外面的两竖线,在这种情况下就是绝对值的表示,因为雅可比式本身就有不同表达方式,有些地方$J$本身就已经代表雅可比式行列式值,此时外面加两竖线就是对行列式值取绝对值,而如果你的$J$仅代表雅可比式的矩阵,那么对不起,你应该再在外面加两竖线,写作$||J||$  

特喵还有脸来拿作者的身份说事,简直可笑!错了就是错了,特喵管你是哪里出身?

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

 Author| dodonaomik Posted 2016-7-8 22:17
不是我可笑,是我无知!


那这个作者写书,怎么乱写的?

因为他给出的结果是-8!


我的天~~~~书也不能这样写啊~~~误人子弟!呵呵~~~水平差的人,肯定要被他误导
战巡同志,不要激动!

19

Threads

61

Posts

435

Credits

Credits
435

Show all posts

 Author| dodonaomik Posted 2016-7-8 22:19
我再仔细研读研读,书中的粗无发生在哪里?
作者为什么,会高出-8这个结果!

Mobile version|Discuz Math Forum

2025-6-5 07:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit