|
hbghlyj
Posted at 2023-8-7 22:20:59
Last edited by hbghlyj at 2024-4-8 19:36:00对任何$x,y,z\inR$成立$a_{11}x^2 +a_{22}y^2 +a_{33}z^2 +2a_{12}xy+2a_{13}xz+2a_{23}yz>0$的充要条件是什么?
看作$x$的二次函数,配方得
$$\color{red}{a_{11}}(x+\frac{a_{12}}{a_{11}}y+\frac{a_{13}}{a_{11}}z)^2+a_{22}y^2+a_{33}z^2+2a_{23}yz-a_{11}(\frac{a_{12}}{a_{11}}y+\frac{a_{13}}{a_{11}}z)^2>0$$
对任何$x,y,z\inR$成立的充要条件是$a_{11}>0$且下式对任何$y,z\inR$成立$$a_{22}y^2+a_{33}z^2+2a_{23}yz-a_{11}(\frac{a_{12}}{a_{11}}y+\frac{a_{13}}{a_{11}}z)^2>0$$
看作$y$的二次函数,配方得
$$\color{red}{(a_{22}-\frac{a_{12}^2}{a_{11}})}\left(y+\frac{a_{23}-\frac{a_{12}a_{13}}{a_{11}}}{a_{22}-\frac{a_{12}^2}{a_{11}}}z\right)^2+\color{red}{\left(a_{33}-\frac{a_{13}^2}{a_{11}}-\frac{(a_{23}-\frac{a_{12}a_{13}}{a_{11}})^2}{a_{22}-\frac{a_{12}^2}{a_{11}}}\right)}z^2>0$$
对任何$y,z\inR$成立的充要条件是两个红色的系数$>0$.
把3个不等式放一起:
\begin{array}l
a_{11}>0
\\a_{22}-\frac{a_{12}^2}{a_{11}}>0
\\a_{33}-\frac{a_{13}^2}{a_{11}}-\frac{(a_{23}-\frac{a_{12}a_{13}}{a_{11}})^2}{a_{22}-\frac{a_{12}^2}{a_{11}}}>0\end{array}相乘发现等价于8#的3个不等式。 |
|