Forgot password?
 Create new account
View 1476|Reply 12

$a_{11}x² +a_{22}y² +a_{33}z² +2a_{12}xy+2a_{13}xz+2a_{23}yz≥0$

[Copy link]

1

Threads

15

Posts

83

Credits

Credits
83

Show all posts

f(x) Posted at 2016-7-18 23:29:27 |Read mode
$a_{11}x² +a_{22}y² +a_{33}z² +2a_{12}xy+2a_{13}xz+2a_{23}yz≥0$的充要条件是什么?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2016-7-19 01:50:05
Last edited by 战巡 at 2016-7-24 03:15:00回复 1# f(x)


充要条件就是矩阵:
\[A=\begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22}&a_{23}\\a_{13} & a_{23} & a_{33}\end{pmatrix}\]
为正定或半正定阵
或者说$A$的特征根全部非负

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2016-7-19 02:35:26
wenku.baidu.com/view/fdaff770fe4733687e21aaea

PS、怎么不用 ^2 而用 ² ?

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2016-7-19 07:32:19
回复 3# kuing


    我说怎么看着方别扭…………

1

Threads

15

Posts

83

Credits

Credits
83

Show all posts

 Author| f(x) Posted at 2016-7-23 22:30:44
回复 2# 战巡
能不能给出初中或者高中形式的结论?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2016-7-24 03:13:17
回复 5# f(x)


又来中学强迫症,拒绝!

本来就是发在高等数学版的贴子,凭什么按中学的思路去走?
如果你非要这种中学形式,那自己去解$A$的特征根,化简出来吧

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-4-18 10:04:52
kuing 发表于 2016-7-18 19:35
http://wenku.baidu.com/view/fdaff770fe4733687e21aaea

PS、怎么不用 ^2 而用 ² ?
对不起,该文档已被删除

Comment

这个真不知道之前贴的是啥了😥  Posted at 2023-4-18 14:05

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-8-7 22:02:48
战巡 发表于 2016-7-19 01:50
回复 1# f(x)
充要条件就是矩阵:
\[A=\begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22}&a_{23}\\a_{13} & a_{23} & a_{33}\end{pmatrix}\]
为正定或半正定阵
或者说$A$的特征根全部非负
$A$ is positive-definite if and only if\[\begin{vmatrix}
a_{11}
\end{vmatrix} > 0\text{, }\begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix} > 0\text{, }\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{vmatrix} > 0\]
MSE

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-8-7 22:08:48
Last edited by hbghlyj at 2024-4-8 19:38:00
战巡 发表于 2016-7-23 19:13
那自己去解$A$的特征根,化简出来吧

下面给出化简的结论:
f(x) 发表于 2016-7-23 22:30
能不能给出初中或者高中形式的结论?

Of course. Expand the determinants if you'd like to
\begin{array}l
a_{11}\ge0
\\a_{11}a_{22}-a_{12} a_{21}\ge0
\\a_{11} a_{22} a_{33}+a_{12}a_{23} a_{31}+a_{13}a_{21}a_{32} - a_{11} a_{23} a_{32} -a_{12} a_{21} a_{33}-a_{13}a_{22} a_{31} \ge0
\end{array}

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-8-7 22:20:59
Last edited by hbghlyj at 2024-4-8 19:36:00
对任何$x,y,z\inR$成立$a_{11}x^2 +a_{22}y^2 +a_{33}z^2 +2a_{12}xy+2a_{13}xz+2a_{23}yz>0$的充要条件是什么?

看作$x$的二次函数,配方得
$$\color{red}{a_{11}}(x+\frac{a_{12}}{a_{11}}y+\frac{a_{13}}{a_{11}}z)^2+a_{22}y^2+a_{33}z^2+2a_{23}yz-a_{11}(\frac{a_{12}}{a_{11}}y+\frac{a_{13}}{a_{11}}z)^2>0$$
对任何$x,y,z\inR$成立的充要条件是$a_{11}>0$且下式对任何$y,z\inR$成立$$a_{22}y^2+a_{33}z^2+2a_{23}yz-a_{11}(\frac{a_{12}}{a_{11}}y+\frac{a_{13}}{a_{11}}z)^2>0$$
看作$y$的二次函数,配方得
$$\color{red}{(a_{22}-\frac{a_{12}^2}{a_{11}})}\left(y+\frac{a_{23}-\frac{a_{12}a_{13}}{a_{11}}}{a_{22}-\frac{a_{12}^2}{a_{11}}}z\right)^2+\color{red}{\left(a_{33}-\frac{a_{13}^2}{a_{11}}-\frac{(a_{23}-\frac{a_{12}a_{13}}{a_{11}})^2}{a_{22}-\frac{a_{12}^2}{a_{11}}}\right)}z^2>0$$
对任何$y,z\inR$成立的充要条件是两个红色的系数$>0$.
把3个不等式放一起:
\begin{array}l
a_{11}>0
\\a_{22}-\frac{a_{12}^2}{a_{11}}>0
\\a_{33}-\frac{a_{13}^2}{a_{11}}-\frac{(a_{23}-\frac{a_{12}a_{13}}{a_{11}})^2}{a_{22}-\frac{a_{12}^2}{a_{11}}}>0\end{array}相乘发现等价于8#的3个不等式。

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-8-7 22:48:49
8#的条件是Determinant test
10#得出的条件是Pivot test
A matrix is positive definite if it's symmetric and all its pivots are positive.

MIT线性代数公开课 27. Positive Definite Matrices and Minima
详见书籍Linear Algebra and Its Applications - Gilbert Strang
6.2 Tests for Positive Definiteness
Screenshot 2023-08-07 224408.png

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-4-9 03:34:15

只知原文档的标题为“半正定二次型及半正定矩阵”

手机版Mobile version|Leisure Math Forum

2025-4-20 22:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list