|
hbghlyj
Posted at 2025-4-1 05:55:36
定义:方程$f(x)=x$的根称为函数$f(x)$的不动点.
$f(x)$的不动点,可将某些递推关系$a_{n}=f\left(a_{n-1}\right)$所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.
定理1:若 $f(x)=a x+b(a \neq 0, a \neq 1)$,$p$是$f(x)$的不动点, $a_{n}$满足递推关系$a_{n}=f\left(a_{n-1}\right),(n>1)$,则$a_{n}-p=a\left(a_{n-1}-p\right)$,即$\left\{a_{n}-p\right\}$是公比为$a$的等比数列.
证明:因为$p$是$f(x)$的不动点,$\therefore a p+b=p$, $\therefore b-p=-a p$,由$a_{n}=a \cdot a_{n-1}+b$得$a_{n}-p=a-a_{n-1}+b-p=a\left(a_{n-1}-p\right)$,所以$\left\{a_{n}-p\right\}$是公比为$a$的等比数列.
定理2:设$f(x)=\frac{a x+b}{c x+d}(c \neq 0, a d-b c \neq 0)$,$\left\{a_{n}\right\}$满足递推关系$a_{n}=f\left(a_{n-1}\right), n>1$,初值条件$a_{1} \neq f\left(a_{1}\right)$
(1):若$f(x)$有两个相异的不动点$p,q$,则$\frac{a_{n}-p}{a_{n}-q}=k \cdot \frac{a_{n-1}-p}{a_{n-1}-q}$ (这里$k=\frac{a-p c}{a-q c}$ )
(2):若$f(x)$只有唯一不动点$p$,则$\frac{1}{a_{n}-p}=\frac{1}{a_{n-1}-p}+k$ (这里$k=\frac{2 c}{a+d}$)
证明:由$f(x)=x$得$f(x)=\frac{a x+b}{c x+d}=x$,所以$c x^{2}+(d-a) x-b=0$.
(1)因为$p,q$是不动点,所以$\left\{\begin{array}{l}c p^{2}+(d-a) p-b=0 \\ c q^{2}+(d-a) q-b=0\end{array}\right.$⇒$\left\{\begin{array}{l}p=\frac{p d-b}{a-p c} \\ q=\frac{q d-b}{a-q c}\end{array}\right.$,所以$\frac{a_{n}-p}{a_{n}-q}=\frac{\frac{a a_{n-1}+b}{c a_{n-1}+d}-p}{\frac{a a_{n-1}+b}{c a_{n-1}+d}-q}=\frac{(a-p c) a_{n-1}+b-p d}{(a-q c) a_{n-1}+b-q d}=\frac{a-p c}{a-q c}·\frac{a_{n-1}-\frac{p d-b}{a-p c}}{a_{n-1}-\frac{qd-b}{a-q c}}=\frac{a-p c}{a+q c}·\frac{a_{k-1}-p}{a_{k-1}-q}$
令$k=\frac{a-p c}{a-q c}$,则$\frac{a_{n}-p}{a_{n}-q}=k \frac{a_{n-1}-p}{a_{n-1}-q}$
(2)因为$p$是方程$c x^{2}+(d-a) x-b=0$的唯一解,所以$c p^{2}+(d-a) p-b=0$.
所以$b-p d=c p^{2}-a p$,$p=\frac{a-d}{2 c}$.所以$a_{n}-p=\frac{a a_{n-1}+b}{c a_{n-1}+d}-p=\frac{(a-c p) a_{n-1}+b-p d}{c a_{n-1}+d}=\frac{(a-c p) \cdot a_{n-1}+c p^{2}-a p}{c a_{n-1}+d}=\frac{(a-c p)\left(a_{n-1}-p\right)}{c a_{k-1}+d}$.
所以$\frac{1}{a_{n}-p}=\frac{1}{a-c p} \cdot \frac{c a_{n-1}+d}{a_{n-1}-p}=\frac{1}{a-c p} \cdot \frac{c\left(a_{n-1}-p\right)+d+c p}{a_{n-1}-p}=\frac{c}{a-c p}+\frac{d+c p}{a-c p} \cdot \frac{1}{a_{n-1}-p}=\frac{1}{a_{n-1}-p}+\frac{2 c}{a+d}$.
令$k=\frac{2 c}{a+d}$,则$\frac{1}{a_{n}-p}=\frac{1}{a_{n-1}-p}+k$
例1:设$\left\{a_{n}\right\}$满足$a_{1}=1, a_{n+1}=\frac{a_{n}+2}{a_{n}}, n \in N^{*}$,求数列$\left\{a_{n}\right\}$的通项公式
例2:数列$\left\{a_{n}\right\}$满足下列关系:$a_{1}=2 a, a_{n+1}=2 a-\frac{a^{2}}{a_{n}}, a \neq 0$,求数列$\left\{a_{n}\right\}$的通项公式
定理3:设函数$f(x)=\frac{a x^{2}+b x+c}{e x+f}(a \neq 0, e \neq 0)$有两个不同的不动点$x_{1}, x_{2}$,且由$u_{n+1}=f\left(u_{n}\right)$确定着数列$\left\{u_{n}\right\}$,那么当且仅当$b=0,e=2a$时,$\frac{u_{n+1}-x_{1}}{u_{n+1}-x_{2}}=\left(\frac{u_{n}-x_{1}}{u_{n}-x_{2}}\right)^{2}$
证明: $x_{k}$是$f(x)$的两个不动点,∴$x_{k}=\frac{a x_{k}^{2}+b x_{k}+c}{e x_{k}+f}$,即$c-x_{k} f=(e-a) x_{k}^{2}-b x_{k}\;(k=1,2)$
$\therefore\frac{u_{n+1}-x_{1}}{u_{n+1}-x_{2}}=\frac{a u_{n}^{2}+b u_{n}+c-x_{1}\left(e u_{n}+f\right)}{a u_{n}{ }^{2}+b u_{n}+c-x_{2}\left(e u_{n}+f\right)}=\frac{a u_{n}^{2}+\left(b-e x_{1}\right) u_{n}+c-x_{1} f}{a u_{n}^{2}+\left(b-e x_{1}\right) u_{n}+c-x_{2} f}=\frac{a u_n^{2}+\left(b-e x_{1}\right) u_{n}+(e-a) x_{1}^{2}-b x_{1}}{a u_n^{2}+\left(b-e x_{2}\right) u_{n}+(e-a) x_{2}^{2}-b x_{2}}$
于是$\frac{u_{n+1}-x_{1}}{u_{n+1}-x_{2}}=\left(\frac{u_{n}-x_{1}}{u_{n}-x_{2}}\right)^{2}$
⇔$\frac{a u_{n}^{2}+\left(b-e x_{1}\right) u_{n}+(e-a) x_{1}^{2}-b x_{1}}{a u_{n}^{2}+\left(b-e x_{2}\right) u_{n}+(e-a) x_{2}^{2}-b x_{2}}=\frac{u_{n}^{2}-2 x_{1} u_{n}+x_{1}^{2}}{u_{n}^{2}-2 x_{2} u_{n}+x_{2}^{2}}$
⇔$\frac{u_{n}^{2}+\frac{b-e x_{1}}{a} u_{n}+\frac{(e-a) x_{1}^{2}-b x_{1}}{a}}{u_{n}^{2}+\frac{b-e x_{2}}{a} u_{n}+\frac{(e-a) x_{2}^{2}-b x_{2}}{a}}=\frac{u_{n}^{2}-2 x_{1} u_{n}+x_{1}^{2}}{u_{n}^{2}-2 x_{2} u_{n}+x_{2}^{2}}$
⇔$\left\{\begin{array}{l}\frac{b-e x_{1}}{a}=-2 x_{1} \\ \frac{b-e x_{2}}{a}=-2 x_{2}\end{array}\right.$⇔$\left\{\begin{array}{l}b+(2 a-e) x_{1}=0 \\ b+(2 a-e) x_{2}=0\end{array}\right.$
于是,$\begin{vmatrix}1&x_1\\1&x_2\end{vmatrix}\ne0$,方程组有唯一解$b=0, e=2 a$.
例3:已知数列$\left\{a_{n}\right\}$中,$a_{1}=2, a_{n+1}=\frac{a_{n}^{2}+2}{2 a_{n}}, n \in N^{*}$,求数列$\left\{a_{n}\right\}$的通项.
其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题:
例4:已知$a_{1}>0, a_{1} \neq 1$且$a_{n+1}=\frac{a_{n}^{4}+6 a_{n}^{2}+1}{4 a_{n}\left(a_{n}^{2}+1\right)}$,求数列$\left\{a_{n}\right\}$的通项.
解:作函数为$f(x)=\frac{x^{4}+6 x^{2}+1}{4 x\left(x^{2}+1\right)}$,解方程 $f(x)=x$得$f(x)$的不动点为$x_{1}=-1, x_{2}=1, x_{3}=-\frac{\sqrt{3}}{3} i, x_{4}=\frac{\sqrt{3}}{3} i$.取$p=1,q=-1$,作如下代换:$\frac{a_{n+1}+1}{a_{n+1}-1}=\frac{\frac{a_{n}^{4}+6 a_{n}^{2}+1}{4 a_{n}\left(a_{n}^{2}+1\right)}+1}{\frac{a_{n}^{4}+6 a_{n}^{2}+1}{4 a_{n}\left(a_{n}^{2}+1\right)}-1}=\frac{a_{n}^{4}+4 a_{n}^{3}+6 a_{n}^{2}+4 a_{n}+1}{a_{n}^{4}-4 a_{n}^{3}+6 a_{n}^{2}-4 a_{n}+1}=\left(\frac{a_{n}+1}{a_{n}-1}\right)^{4}$
逐次迭代后,得: $a_{n}=\frac{\left(a_{1}+1\right)^{4^{n-1}}+\left(a_{1}-1\right)^{4^{n-1}}}{\left(a_{1}+1\right)^{4^{n-1}}-\left(a_{1}-1\right)^{4^{n-1}}}$
已知曲线$C_{n}: x^{2}-2 nx+y^{2}=0(n=1,2, \ldots)$.从点$P(-1,0)$向曲线$C_{n}$引斜率为$k_{n}\left(k_{n}>0\right)$的切线 $l_{n}$,切点为$P_{n}\left(x_{n}, y_{n}\right)$.
(1)求数列$\left\{x_{n}\right\}$与$\left\{y_{n}\right\}$的通项公式;
(2)证明:$x_{1} \cdot x_{3}·x_{5} \cdots x_{2 n-1}<\sqrt{\frac{1-x_{n}}{1+x_{n}}}<\sqrt{2} \sin \frac{x_{n}}{y_{n}}$
设$p,q$为实数,$α,β$是方程$x^{2}-p x+q=0$的两个实根,数列$\{x_n\}$满足$x_{1}=p$,\(x_{2} = p^{2} - q\),\(x_{n} = px_{n - 1} - qx_{n - 2}\),$x_{n}=p x_{n-1}-q x_{n-2}$($n=3,4,⋯$).(1)证明:\(\alpha + \beta = p\),\(\alpha\beta = q\);(2)求数列\(\{x_n\}\)的通项公式;(3)若\(p = 1\),\(q = \frac{1}{4}\),求\(\{ x_{n}\}\)的前\(n\)项和\(S_{n}\).
已知函数\(f(x) = x^{2} + x - 1\),\(\alpha ,\beta\)是方程\(f(x) = 0\)的两个根(\(\alpha > \beta\)), \(f^{'}(x)\)是\(f(x)\)的导数,设\(a_{1} = 1\),$a_{n+1}=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)}(n=1,2, \cdots)$.
(1)求$\alpha,\beta$的值;
(2)证明:对任意的正整数$n$,都有$a_n\gt\alpha$;
(3)记$b_{n}=\ln \frac{a_{n}-\beta}{a_{n}-\alpha}(n=1,2, \cdots)$,求数列$\{b_n\}$的前$n$项和$S_n$.
13陕西文21.(本小题满分12分)已知数列$\left\{a_{n}\right\}$满足$a_{1}=1, a_{2}=2, a_{n+2}=\frac{a_{n}+a_{n+1}}{2}, n \in N^{*}$. (I)令$b_{n}=a_{n+1}-a_{n}$,证明:$\left\{b_{n}\right\}$是等比数列;
(Ⅱ)求$\{a_n\}$的通项公式.
山东文20.(本小题满分12分)等比数列$\{a_n\}$的前$n$项和为$S_n$, 已知对任意的$n \in N^{+}$,点$\left(n, S_{n}\right)$均在函数$y=b^{x}+r$($b>0$且$b \neq 1, b, r$均为常数)的图像上.(1)求$r$的值;(2)当b=2时,记$b_{n}=\frac{n+1}{4 a_{n}}\left(n \in N^{+}\right)$.求数列$\left\{b_{n}\right\}$的前$n$项和$T_{n}$ |
|