Forgot password?
 Create new account
View 2215|Reply 3

[函数] 三次函数图像的平行切线的最小距离

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-10-13 14:51:52 |Read mode
GHJ.gif

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-13 14:58:09
谁画的啊?这么牛掰!
妙不可言,不明其妙,不着一字,各释其妙!

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-13 14:58:29
最小不是0么,动画一开始的时候

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-13 20:52:01
不失一般性,只要考虑 $f(x)=ax^3+bx$ 时,其中 $a>0$, $b\in\mbb R$。
设 $x_0\in\mbb R$,则点 $(x_0,f(x_0))$ 处的切线为 $y=(3ax_0^2+b)(x-x_0)+ax_0^3+bx_0$,即 $y=(3ax_0^2+b)x-2ax_0^3$,由对称性,与此切线平行的另一切线为 $y=(3ax_0^2+b)x+2ax_0^3$,设两切线距离为 $d$,则易得
\[d^2=\frac{16a^2x_0^6}{1+(3ax_0^2+b)^2},\]
然后你想怎么玩就怎么玩。

手机版Mobile version|Leisure Math Forum

2025-4-21 14:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list