Forgot password?
 Register account
View 2347|Reply 3

[函数] 三次函数图像的平行切线的最小距离

[Copy link]

460

Threads

952

Posts

9848

Credits

Credits
9848

Show all posts

青青子衿 Posted 2013-10-13 14:51 |Read mode
GHJ.gif

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-13 14:58
谁画的啊?这么牛掰!
妙不可言,不明其妙,不着一字,各释其妙!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-13 14:58
最小不是0么,动画一开始的时候

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-13 20:52
不失一般性,只要考虑 $f(x)=ax^3+bx$ 时,其中 $a>0$, $b\in\Bbb R$。
设 $x_0\in\Bbb R$,则点 $(x_0,f(x_0))$ 处的切线为 $y=(3ax_0^2+b)(x-x_0)+ax_0^3+bx_0$,即 $y=(3ax_0^2+b)x-2ax_0^3$,由对称性,与此切线平行的另一切线为 $y=(3ax_0^2+b)x+2ax_0^3$,设两切线距离为 $d$,则易得
\[d^2=\frac{16a^2x_0^6}{1+(3ax_0^2+b)^2},\]
然后你想怎么玩就怎么玩。

Mobile version|Discuz Math Forum

2025-6-5 18:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit