Forgot password?
 Register account
View 2282|Reply 10

[不等式] 一道竞赛题

[Copy link]

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

caesarxiu Posted 2017-1-5 00:44 |Read mode
设$a,b,c,d$都是实数,$a+2b+3c+4d=\sqrt{10}$,$a^2+b^2+c^2+d^2+(a+b+c+d)^2$的最小值是____

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2017-1-5 00:51
待定系数。柯西一步就可搞定

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

 Author| caesarxiu Posted 2017-1-5 12:31
我也估计着是用柯西,但是……愿闻其详

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-1-5 16:11
forum.php?mod=viewthread&tid=4008 (这帖原本已经删掉,好在一直没有清空回收站)

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-1-5 17:41
确实是比较明显的柯西啊。

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

 Author| caesarxiu Posted 2017-1-5 23:00
回复 5# 敬畏数学

有时候是看着明显,算起来就麻烦了

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

 Author| caesarxiu Posted 2017-1-5 23:05
回复 4# kuing
我就说哪有这么明摆的柯西直接套的,真是顶礼膜拜了

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2017-1-7 21:22
我想这样也可以处理,先换元$a=\sqrt{10}w,b=\sqrt{10}x,c=\sqrt{10}y,d=\sqrt{10}z$
然后代掉w,固定y,z,看作x的二次函数,得到最小值(是y,z2次式子,且2次项系数没有字母),再固定z,依次下去...,
也只是想想而已.

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

 Author| caesarxiu Posted 2017-1-8 23:50
Last edited by caesarxiu 2017-1-9 00:07回复 8# realnumber

聪明  。。想想都觉得运算量大,还是想想就好……

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

 Author| caesarxiu Posted 2017-1-9 00:00
回复 4# kuing

有点疑惑,如果乘以15的话,为什么算得是$\dfrac{2}{3}$.

$15[a^2+b^2+c^2+d^2+(a+b+c+d)^2]$

$=(0^2+1^2+2^2+3^2+1^2)[a^2+b^2+c^2+d^2+(a+b+c+d)^2]$

$\geqslant (a+2b+3c+4d)^2=10$

故   $a^2+b^2+c^2+d^2+(a+b+c+d)^2\geqslant \dfrac{2}{3}$

取等时$a=0,b=\dfrac{1}{\sqrt{15}},c=\dfrac{2}{\sqrt{15}},d=\dfrac{3}{\sqrt{15}}$.

是我算错了吗?还是哪里步骤错了?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-1-9 01:20
回复 10# caesarxiu

取等有问题

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit