Forgot password?
 Create new account
View 3259|Reply 2

求一个积分收敛,但平方后积分发散的函数。

[Copy link]

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2017-2-13 23:15:50 |Read mode
$D$是平面上的一个无界闭区域,且对任意的$R > 0$,区域$D \cap \{(x,y) \mid x^2+y^2 \le R^2\}$都是可求面积的闭区域,求一个定义在平面上的连续函数$f(x,y)$,使得$\int_{D}f(x,y)dxdy$收敛,但是$\int_{D}f^2(x,y)dxdy$发散。

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2017-2-14 02:48:21
回复 1# abababa

这个还不简单..
在无穷远处收敛的肯定无穷远处接近$0$,再一平方更加接近$0$,肯定没戏,你只能去找瑕积分

我随便给你个例子
\[g(x)=\frac{1}{(1+x)\sqrt{x}}\]

\[\int_0^{+\infty}g(x)dx=2\arctan(\sqrt{x})|^{+\infty}_0=\pi<+\infty\]
\[\int_0^{+\infty}g(x)^2dx=(\frac{1}{x+1}-\ln(1+\frac{1}{x}))|^{+\infty}_0=+\infty\]
而你需要的二元函数只需要
\[f(x,y)=g(x)g(y)\]
即可,这玩意就会在$D=[0,+\infty]\times[0,+\infty]$上满足条件

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2017-2-14 07:37:28
回复 2# 战巡
谢谢。我觉得这里的区域$D$指的是任意一个有界闭区域,不一定是特定的$[0,\infty]\times[0,\infty]$。我开始的想法是弄一个函数,让它在$D'=[0,1]\times[0,1]$里(或者其它如单位圆里)定义成一个函数,在其它地方都定义成$0$,然后再找一个函数和它相乘,这样积分时就只限定在$D'$里了。
二楼这里的如果把$g(x)$在负半轴都定义成$0$,也可以满足对任意的$D$都成立,但是不能在点$(0,0)$处连续。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list