Forgot password?
 Register account
View 1702|Reply 5

[组合] 空间中自原点引出的两两夹角不小于$\frac{\pi}{4}$的射线

[Copy link]

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2017-3-19 13:03 |Read mode
空间(三维)中自原点(空间直角坐标系的原点)引出的两两夹角不小于$\frac{\pi}{4}$的射线,最多能有几条。

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

 Author| abababa Posted 2017-3-19 13:09
回复 1# abababa

网友告诉我他证明了不超过26条(证明过程我暂时没看到),但他没给出26条是否是最多的。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2017-3-21 23:07
回复 2# abababa


    这样粗略估计也是26条
半径为1的球面面积为 $4\pi$,侧面顶角45°,侧棱1的三棱锥底面积是$\frac{\sqrt{3}}{4}(2-\sqrt{2})$.这2个数据相除是49.5,球面上被切出的"三角"区域一定略大于三棱锥底面,所以取49.
接下来考虑球面上多面体问题。满足F-E+V=2,F=49,E=49×3÷2,得V=26.5
所以$V\le 26$,这个显然太粗糙了,如果球面三角区域面积更精确些,球面也不会恰好分割成三面角都45度的区域。所以实际数据应该远比26小

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

 Author| abababa Posted 2017-3-24 09:20
回复 3# realnumber

和网友的方法差不多,都是用面积估计的,网友用的是圆锥,截出来的是球冠。
假设能引出$27$条两两夹角不小于$\frac{\pi}{4}$的射线。

以$O$为顶点,以每条射线为轴,作母线与轴夹角为$\frac{\pi}{8}$的圆锥。由于任意两射线夹角不小于$\frac{\pi}{4}$,所以这些圆锥不重叠。以$O$为球心作单位球,$27$个圆锥截得$27$个不重叠的球冠,每个球冠面积为$S = 2\pi rh = 2\pi \cdot 1 \cdot (1-1 \cdot \cos\frac{\pi}{8}) = 2\pi(1-\cos\frac{\pi}{8})$,所以总面积为$27S = 54\pi(1-\cos\frac{\pi}{8})$。但单位球表面积为$4\pi r^2 = 4\pi$,而$27S > 4\pi$,矛盾,所以射线不超过$26$条。

感觉上这种方法是能存在26条,但构造出来不知道是不是满足条件。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-1-10 09:43
abababa 发表于 2017-3-24 02:20
感觉上这种方法是能存在26条,但构造出来不知道是不是满足条件。
“存在26条”如何构造呢
正十二面体有20个顶点, 顶点$A_1(φ, \frac1φ,0)$、$A_2(φ, -\frac1φ,0)$, 则$∠A_1OA_2≈41$°
相关帖子: $\Bbb R^n$中的$n+1$条射线的夹角全都相等

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-1-10 09:43
可能相关: Equiangular lines with a fixed angle
Solving a longstanding problem on equiangular lines, we determine, for each given fixed angle and in all sufficiently large dimensions, the maximum number of lines pairwise separated by the given angle. Fix $0 < \alpha < 1$. Let $N_\alpha(d)$ denote the maximum number of lines through the origin in $\mathbb{R}^d$ with pairwise common angle $\arccos \alpha$. Let $k$ denote the minimum number (if it exists) of vertices in a graph whose adjacency matrix has spectral radius exactly $(1-\alpha)/(2\alpha)$. If $k < \infty$, then $N_\alpha(d) = \lfloor k(d-1)/(k-1) \rfloor$ for all sufficiently large $d$, and otherwise $N_\alpha(d) = d + o(d)$. In particular, $N_{1/(2k-1)}(d) = \lfloor k(d-1)/(k-1) \rfloor$ for every integer $k\ge 2$ and all sufficiently large $d$. A key ingredient is a new result in spectral graph theory: the adjacency matrix of a connected bounded degree graph has sublinear second eigenvalue multiplicity.

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit