Forgot password?
 Register account
View 1867|Reply 4

[函数] 最小值的最大值问题

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-4-26 11:00 |Read mode
x,y均为正实数,min{2x,1/y,y+1/x}的最大值?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-4-26 11:50
回复 1# 敬畏数学

最大值的最小值很好求。下面求最小值的最大值。
$m\leqslant 2x,m\leqslant \dfrac{1}{y}$
则$x\geqslant \dfrac{m}{2},y\leqslant \dfrac{1}{m}$
所以,$m\leqslant y+\dfrac{1}{x}\leqslant \dfrac{1}{m}+\dfrac{2}{m}$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-4-26 13:59
前几天才有人问过啊:forum.php?mod=viewthread&tid=4534

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2017-4-26 14:14
回复 2# 力工
最大值的最小值怎么玩啊?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-4-27 09:20
回复 4# 敬畏数学
一样,
$M\geqslant 2x,M\geqslant \dfrac{1}{y},M\geqslant (y+\dfrac{1}{x})$
则有$2M\cdot M\geqslant (2x+\dfrac{1}{y})\cdot(y+\dfrac{1}{x} )$.

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit