|
Last edited by hbghlyj 2025-5-7 00:37
\begin{align*}
& \tan \alpha=f'(x) \\
& \tan (\alpha+\Delta \alpha)=f'(x+\Delta x) \\
& \tan \Delta \alpha=\frac{\tan (\alpha+\Delta \alpha)-\tan \alpha}{1+\tan \alpha \tan (\alpha+\Delta \alpha)}=\frac{f'(x+\Delta x)-f'(x)}{1+f'(x) f'(x+\Delta x)} \\
& \Delta \alpha=\arctan \frac{f'(x+\Delta x)-f'(x)}{1+f'(x) f'(x+\Delta x)} \\
& \frac{\Delta \alpha}{\Delta x}=\frac{\arctan \frac{f'(x+\Delta x)-f'(x)}{1+f'(x) f'(x+\Delta x)}}{\Delta x} \tag1\\
&\tan \alpha=f'(x) \Rightarrow \alpha= \frac{\arctan f'(x)}{\Delta \alpha} \\
& \frac{\Delta x}{\Delta x}=\frac{f^{\prime \prime}(x)}{1+f'(x)^2}\tag2
\end{align*}
这两个答案是等价的吗? |
|