Forgot password?
 Create new account
View 1575|Reply 5

一个与微分有关的题目!

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-10-19 16:57:29 |Read mode
d01373f082025aaf27aa2607fbedab64024f1a65.jpg
这两个答案是等价的吗?

701

Threads

110K

Posts

910K

Credits

Credits
94167
QQ

Show all posts

kuing Posted at 2013-10-19 17:25:13
回复 1# 青青子衿

第一条式对;
第二条式不对,应改为 $\displaystyle\lim_{\Delta x\to0}\frac{\Delta\alpha}{\Delta x}=\cdots$,或者 $\dfrac{\rmd\alpha}{\rmd x}=\cdots$。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-19 17:38:01
回复 2# kuing
最后一个明明就是在求导(微商),青青还来变化率干嘛?
妙不可言,不明其妙,不着一字,各释其妙!

701

Threads

110K

Posts

910K

Credits

Credits
94167
QQ

Show all posts

kuing Posted at 2013-10-19 17:48:12
第一条式取极限后亦为正确的第二条式。
\begin{align*}
&\lim_{\Delta x\to 0}\frac{\arctan \frac{f'(x+\Delta x)-f'(x)}{1+f'(x)f'(x+\Delta x)}}{\Delta x} \\
={}&\lim_{\Delta x\to 0}\frac{1}{1+f'(x)f'(x+\Delta x)}\cdot \lim_{\Delta x\to 0}\frac{\arctan \frac{\Delta x\cdot f''(x+\theta \Delta x)}{1+f'(x)f'(x+\Delta x)}}{\frac{\Delta x}{1+f'(x)f'(x+\Delta x)}} \\
={}&\frac{f''(x)}{1+\bigl(f'(x)\bigr)^2}.
\end{align*}
当然前提是二阶可导。

7

Threads

53

Posts

398

Credits

Credits
398

Show all posts

icesheep Posted at 2013-10-27 23:20:56
\[d\theta  = d\arctan \frac{{y'}}{{x'}} = \frac{{y''x' - x''y'}}{{x{'^2} + y{'^2}}}dt\]

令 x=t 就是楼主最后一行的东西

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-27 23:29:47
回复 5# icesheep
你来微分了

手机版Mobile version|Leisure Math Forum

2025-4-20 22:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list