Forgot password?
 Register account
View 1067|Reply 1

一道关于可导与连续的关系的证明题

[Copy link]

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

longma Posted 2017-5-24 15:55 |Read mode
Last edited by hbghlyj 2025-4-6 03:45设函数 $\varphi(x)$ 在 $x=2$ 处连续,$f(x)=\left(x^2-4\right) \varphi(x)$ ,证明函数 $f(x)$ 在 $x=2$ 处可导。

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2017-5-24 16:03
这不是非常显然吗?因为
\[\frac{f(x)-f(2)}{x-2}=\frac{(x^2-4)\varphi (x)}{x-2}=(x+2)\varphi (x),\]
由连续性知 $\lim_{x\to2}\varphi (x)\to\varphi (2)$,所以
\[\lim_{x\to2}\frac{f(x)-f(2)}{x-2}=4\varphi (2),\]
即 $f'(2)$ 存在且等于 $4\varphi(2)$。

Mobile version|Discuz Math Forum

2025-6-5 08:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit