Forgot password
 Register account
View 1710|Reply 1

一个简单的极限

[Copy link]

50

Threads

402

Posts

5

Reputation

Show all posts

zhcosin posted 2017-5-27 22:13 |Read mode
Last edited by zhcosin 2017-6-2 17:29题目 已知$p+1$个实数$a_i$满足$a_0+a_1+\cdots+a_p=0$,求证
\[  \lim_{n \to \infty} (a_0\sqrt{n}+a_1\sqrt{n+1}+\cdots+a_p\sqrt{n+p}) = 0  \]

证明 把$a_p$用其它$p$个数表示出来,那个式子就成为
\[ a_0(\sqrt{n}-\sqrt{n+p})+a_1(\sqrt{n+1}-\sqrt{n+p})+\cdots+a_{p-1}(\sqrt{n+p-1}-\sqrt{n+p})   \]
由此便知其极限为零。

461

Threads

958

Posts

4

Reputation

Show all posts

青青子衿 posted 2020-9-11 22:52
回复 1# zhcosin
【根式】【极限】
2452491122298.png

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 05:47 GMT+8

Powered by Discuz!

Processed in 0.092236 seconds, 26 queries