|
kuing
Posted 2017-6-12 16:05
总算纯粹靠变形推出了递推式,从而可以确定楼上式中的 $q$ 确实不需要限制。
记
\[b_n=\sum_{k=0}^{[n/2]}C_{n-k}^k(1-q)^{n-2k}q^k.\]
(1)当 $n$ 为偶数时,设 $n=2m$,则 $[n/2]=[(n+1)/2]=m$, $[(n-1)/2]=m-1$,于是
\begin{align*}
b_{n+1}-(1-q)b_n
&=\sum_{k=0}^mC_{2m+1-k}^k(1-q)^{2m+1-2k}q^k
-(1-q)\sum_{k=0}^mC_{2m-k}^k(1-q)^{2m-2k}q^k \\
&=\sum_{k=1}^m(C_{2m+1-k}^k-C_{2m-k}^k)(1-q)^{2m+1-2k}q^k \\
&=\sum_{k=1}^mC_{2m-k}^{k-1}(1-q)^{2m+1-2k}q^k \\
&=\sum_{k=0}^{m-1}C_{2m-1-k}^k(1-q)^{2m-1-2k}q^{k+1} \\
&=qb_{n-1};
\end{align*}
(2)当 $n$ 为奇数时(本来想说同理可证的,不过想想还是写下好),设 $n=2m+1$,则 $[n/2]=[(n-1)/2]=m$, $[(n+1)/2]=m+1$,于是
\begin{align*}
b_{n+1}-(1-q)b_n
&=\sum_{k=0}^{m+1}C_{2m+2-k}^k(1-q)^{2m+2-2k}q^k
-(1-q)\sum_{k=0}^mC_{2m+1-k}^k(1-q)^{2m+1-2k}q^k \\
&=q^{m+1}+\sum_{k=1}^m(C_{2m+2-k}^k-C_{2m+1-k}^k)(1-q)^{2m+2-2k}q^k \\
&=q^{m+1}+\sum_{k=1}^mC_{2m+1-k}^{k-1}(1-q)^{2m+2-2k}q^k \\
&=\sum_{k=1}^{m+1}C_{2m+1-k}^{k-1}(1-q)^{2m+2-2k}q^k \\
&=\sum_{k=0}^mC_{2m-k}^k(1-q)^{2m-2k}q^{k+1} \\
&=qb_{n-1}.
\end{align*}
综上,恒有 $b_{n+1}-(1-q)b_n=qb_{n-1}$,即
\[b_{n+1}-b_n=-q(b_n-b_{n-1}),\]
易知 $b_0=1$, $b_1=1-q$,故 $b_n-b_{n-1}=(-q)^n$,所以
\[b_n=1-q+q^2-q^3+\cdots+(-q)^n.\] |
|