Forgot password?
 Create new account
View 1181|Reply 3

$\sum_{n=1}^{\infty}\cdots=0$对任意x都成立,能推出$f(n)=0$吗?

[Copy link]

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2017-6-27 19:26:43 |Read mode
如题,$\sum_{n=1}^{\infty}x^{2n+1}f(n)=0$对任意x都成立,能推出$f(n)=0$吗?

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2017-11-21 10:45:43
必然是的,因为$x^{2n+1}$构成的是线性独立的基. 令$X=(f(1),f(2),\cdots,f(n),\cdots)^T$,$x$ 取任意非零值,都有线性方程\[AX=0\]显然$\det A\neq 0$,那么齐次方程只有唯一零解$X=0$.

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2017-11-21 21:58:38
回复 2# Infinity
谢谢。这个有限维的我能理解,但无穷维的我还理解不了。

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2017-11-22 13:13:56
回复 3# abababa

无穷维的这种函数空间属于数学中的泛函分析领域,你可以看看相关教材。另外,如果你能理解广义傅里叶变换,这个也就不难理解。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list