Forgot password
 Register account
View 1327|Reply 3

[分析/方程] $\sum_{n=1}^{\infty}\cdots=0$对任意x都成立,能推出$f(n)=0$吗?

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2017-6-27 19:26 |Read mode
如题,$\sum_{n=1}^{\infty}x^{2n+1}f(n)=0$对任意x都成立,能推出$f(n)=0$吗?

0

Threads

153

Posts

2

Reputation

Show all posts

Infinity posted 2017-11-21 10:45
必然是的,因为$x^{2n+1}$构成的是线性独立的基. 令$X=(f(1),f(2),\cdots,f(n),\cdots)^T$,$x$ 取任意非零值,都有线性方程\[AX=0\]显然$\det A\neq 0$,那么齐次方程只有唯一零解$X=0$.

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2017-11-21 21:58
回复 2# Infinity
谢谢。这个有限维的我能理解,但无穷维的我还理解不了。

0

Threads

153

Posts

2

Reputation

Show all posts

Infinity posted 2017-11-22 13:13
回复 3# abababa

无穷维的这种函数空间属于数学中的泛函分析领域,你可以看看相关教材。另外,如果你能理解广义傅里叶变换,这个也就不难理解。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 07:56 GMT+8

Powered by Discuz!

Processed in 0.012126 seconds, 22 queries