Forgot password?
 Create new account
View 2156|Reply 9

[不等式] 求$\frac{a+b+c}{(4a^2+2b^2+1)(4c^2+3)}$的最大值

[Copy link]

72

Threads

96

Posts

1170

Credits

Credits
1170

Show all posts

v6mm131 Posted at 2017-8-4 19:33:55 |Read mode
已知$a,b,c>0$,求$\dfrac{a+b+c}{(4a^2+2b^2+1)(4c^2+3)}$的最大值.

Related collections:

72

Threads

96

Posts

1170

Credits

Credits
1170

Show all posts

 Author| v6mm131 Posted at 2017-8-4 19:37:08
回复 1# v6mm131


   这个题太水了

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-8-4 20:59:47
回复 2# v6mm131

嫌水就加强、推广、改编它呗

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-8-4 22:14:46
来一个装逼型SOS
\begin{align*}
&3 (4 a^2 + 2 b^2 + 1) (4 c^2 + 3) - 16 (a + b + c)\\
={}&2 (4 c^2 + 3) (2 a - b)^2 + 4 (a + b + c - 1)^2 + (4 b c + 4 c a - 1)^2 + 2 (2 a + 2 b - 1)^2 + 2 (2 c - 1)^2
\end{align*}

72

Threads

96

Posts

1170

Credits

Credits
1170

Show all posts

 Author| v6mm131 Posted at 2017-8-4 23:59:16
回复 4# kuing
666

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2017-8-6 12:40:56
Last edited by hbghlyj at 2025-4-10 00:59:21回复 4# kuing
这个B装的太牛了!
\begin{aligned}
\text { 由 }\left(4 a^2+2 b^2+1\right)\left(1+2+4 c^2\right) & =\left(4 a^2+2 b^2+\frac{1}{3}+\frac{2}{3}\right)\left(\frac{1}{3}+\frac{2}{3}+4 c^2+2\right) \\
& \geq\left(\frac{2 \sqrt{3}}{3} a+\frac{2 \sqrt{3}}{3} b+\frac{2 \sqrt{3}}{3} c+\frac{2 \sqrt{3}}{3}\right)^2 \\
& =\frac{4}{3}[(a+b+c)+1]^2 \geq \frac{16}{3}(a+b+c) \\
\text { 故有 } \frac{a+b+c}{\left(4 a^2+2 b^2+1\right)\left(1+2+4 c^2\right)} \leq & \frac{3}{16}
\end{aligned}

72

Threads

96

Posts

1170

Credits

Credits
1170

Show all posts

 Author| v6mm131 Posted at 2017-8-7 00:57:27
回复 6# 其妙
nice!

72

Threads

96

Posts

1170

Credits

Credits
1170

Show all posts

 Author| v6mm131 Posted at 2017-8-7 01:00:09
回复 4# kuing

also see:

   已知$a,b,c>0$,求$\dfrac{(a+b+c)^2}{(4a^2+2b^2+1)(4c^2+3)}$的最大值.

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-8-7 02:29:19
回复 8# v6mm131

不是吧,这不是更水了?CS一步到位了啊

72

Threads

96

Posts

1170

Credits

Credits
1170

Show all posts

 Author| v6mm131 Posted at 2017-8-7 07:24:21
回复 9# kuing

这个比上面那个确实水多了
\[(4a^2+2b^2+1)(1+2+4c^2)\ge4(a+b+c)^2\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list