Forgot password?
 Register account
Author: realnumber

[几何] 求正方体的一顶点到面的距离

[Copy link]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-12-24 09:06
回复 19# 其妙


可以做出来欣赏一下吗?

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-12-24 14:40
回复 21# 走走看看
好吧,还是写一写,权当练习下$LaTex$(很久不练习,都生疏了,以下做法有些许瑕疵,请自行完善):
以$A$为原点,三条邻边为轴,建立坐标系,设平面$\alpha$的法向量为$\vv n=(x,y,z)$(不必取单位法向量或其它模长的法向量),由题意,
$\dfrac z{\sqrt{x^2+y^2+z^2}}=\cos30^0=\dfrac{\sqrt3}2$,即:$z^2=3(x^2+y^2)$

点$C_1$到平面$\alpha$的距离为(这里选择了斜线向量$\vv{AC_1}$较好):
$d=\dfrac{\abs{\vv{AC_1}\cdot\vv n}}{\abs{\vv{n}}}=\dfrac{\abs{(4,4,4)\cdot(x,y,z)}}{\sqrt{x^2+y^2+z^2}}=\dfrac{\abs{4x+4y+4z}}{\sqrt{x^2+y^2+z^2}}=\dfrac{4(x+y)+4\sqrt{3(x^2+y^2)}}{\sqrt{4(x^2+y^2)}}=\dfrac{2(x+y)}{\sqrt{x^2+y^2}}+2\sqrt3$,

以下同第一页的柯西不等式,从略。
用基向量本质上也是一样的,不再写出。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-12-24 23:20
回复 22# 其妙

太棒啦!谢谢您!学习了。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-12-25 14:26
未命名.PNG

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-12-25 22:31
回复 24# 游客


  画得真棒!谢谢您!

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2017-12-30 16:16
Last edited by realnumber 2017-12-30 17:50继续1楼的解答,
$\abs{(\vv{a}+\vv{b})·\vv{n}}=\abs{16x+32y}---(1)$
又$\abs{\vv{n}}=1$,得到$16x^2+32y^2+z^2=1----(2)$,
又夹角30度得到$\cos{30\du}=\frac{16x}{4},x=\frac{\sqrt{3}}{8}$
(1)简化为$\abs{(\vv{a}+\vv{b})·\vv{n}}=\abs{16x+32y}=\abs{2\sqrt{3}+32y}---(1')$
(2)简化为$32y^2+z^2=0.25$----(2')这样令z=0,$y=\frac{\sqrt{2}}{16}$,(1')取最大.

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2018-1-3 14:37
回复 26# realnumber

我在15楼算错了。谢谢您的指点!

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit