Last edited by hbghlyj 2025-5-3 18:56
设正四面体的棱长为6,以底面BCD的中心为原点,建立如图所示的空间直角坐标系。
易知$A(0,0,2\sqrt{6} ),E(\sqrt{3},0,0 ),D(-2\sqrt{3},0,0 ),C(\sqrt{3},3,0)$
设P、Q坐标分别为(x,y,z)、(x’,y’,z’),并设$\vv{AP}=λ\vv{AE}, \vv{DQ}=μ\vv{DC}$
则有$(x,y,z-2\sqrt{6} )= λ(\sqrt{3},0,-2\sqrt{6} ),(x’+2\sqrt{3} ,y’,z’)=μ(3\sqrt{3},3,0) $
所以$P(\sqrt{3}λ,0,2\sqrt{6}(1-λ) ),Q(3\sqrt{3}μ-2\sqrt{3},3μ,0 ),$
所以$\vv{PQ}=(\sqrt{3}λ-3\sqrt{3}μ +2\sqrt{3},-3μ,2\sqrt{6}(1-λ)).$
又 $\vv{AE}·\vv{PQ}=0, \vv{DC}·\vv{PQ}=0$, 即 $\led27λ-9μ&=18\\ 9λ-36μ&=-18 \endled\ledλ&= 10/11\\ μ &= 8/11\endled$
所以 $\frac{AP}{PE}=10$ |