|
kuing
posted 2018-3-5 14:36
回复 9# kuing
续:
设切点 $Q$ 的横坐标为 $q$,由于 $Q$ 必在弧 $AD$ 内,所以 $-1<q<1$,不难求出切线 $Q_1Q_2$ 的方程为 $y=(2-2q)x+q^2+3$,然后代点到直线距离公式,化简后可得
\[2h_1+2h_2=\frac{4q^2+4}{\sqrt{(2-2q)^2+1}},\]
而
\[\left(\frac{4q^2+4}{\sqrt{(2-2q)^2+1}}\right)^2-64=\frac{16(q-1)\bigl(q^2(q+1)+19-13q\bigr)}{(2-2q)^2+1}<0,\]
所以
\[2h_1+2h_2<8,\]
也就是说复杂情形的面积一定小于当所选直径平行于 $x$ 轴时的面积。 |
|