Forgot password?
 Create new account
View 1582|Reply 6

[几何] 求外接球,内切球,棱切球的半径

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2018-5-13 10:43:33 |Read mode
1.棱长为1的正方体.
2.棱长为1的正四面体.
3.底边为1侧棱为3的正三棱锥和正四棱锥.

就看看不必出手
其它的几个正多面体应该不简单了吧

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2018-5-13 11:03:10
回复 1# realnumber


纯几何角度的话,以四面体为例,需要了解欧拉四面体体积公式,三面角余弦定理,(克列尔定理)等等。

不过,在棱长合部已知的条件下,建系算算就全部OK了。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2025-1-2 21:36:36
利用6阶Cayley-Menger行列式可以求棱长给定的四面体外接球半径$R$\begin{align*} 0=\begin{vmatrix} 0&a^2&b^2&c^2&R^2&1\\ a^2&0&{c_{\overset{\,}1}}\!^2&{b_{\overset{\,}1}}\!^2&R^2&1\\ b^2&{c_{\overset{\,}1}}\!^2&0&{a_{\overset{\,}1}}\!^2&R^2&1\\ c^2&{b_{\overset{\,}1}}\!^2&{a_{\overset{\,}1}}\!^2&0&R^2&1\\ R^2&R^2&R^2&R^2&0&1\\ 1&1&1&1&1&0\\ \end{vmatrix} \end{align*}

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2025-1-2 21:41:34
Crelle, A. L. (1821). Einige Bemerkungen über die dreiseitige Pyramide. Sammlung mathematischer Aufsätze und Bemerkungen 1: 105–132.
archive.org/details/sammlungmathemat01crel
Crelle's Theorem. Let $V$ and $R$ be the volume and the circumradius of a tetrehedron $A B C D$, respectively. Then the quantities $a=A B \cdot C D, b=A C \cdot B D, c=A D \cdot B C$ are side-lengths of a triangle whose area $S$ is given by the formula $S=6 R V$.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2025-1-2 21:53:40
上述定理的一个英文参考文献是
  • I. Todhunter, "Spherical Trigonometry: For the Use of Colleges and Schools" (1886)
    (在线副本可在古腾堡计划 1 和 archive.org 234 下获取)。
该定理包含在第 129 页 (Art. 163) 中。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2025-1-2 22:32:37
杨路,曾振柄
An open problem on metric invariants of tetrahedra
doi.org/10.1145/1073884.1073934
$$R^2 = -\frac{M_5}{2 M_0}$$
其中 $M_0$ 是 Cayley-Menger 行列式,而 $M_5$ 是通过删除 $M_0$ 的第 5 行和第 5 列得到的顺序主子式。
也就是说,设棱长为$a,b,c,A,B,C$,则
$$\begin{align}
M_0 := \left|\begin{array}{ccccc}
  0 & a^2 & b^2 & c^2 & 1 \\
a^2 &   0 & C^2 & B^2 & 1 \\
b^2 & C^2 &   0 & A^2 & 1 \\
c^2 & B^2 & A^2 &   0 & 1 \\
  1 &   1 &   1 &   1 & 0
\end{array}\right| &= 288 V^2 \\[8pt]
M_5 := \left|\begin{array}{cccc}
  0 & a^2 & b^2 & c^2 \\
a^2 &   0 & C^2 & B^2 \\
b^2 & C^2 &   0 & A^2 \\
c^2 & B^2 & A^2 &   0 \\
\end{array}\right|
&= \begin{array}{c}
-(a A + b B + c C)(-a A + b B + c C) \\
\cdot(a A - b B + c C)(a A + b B - c C)
\end{array}
\end{align}$$
$type An open problem on metric invariants of tetrahedra.pdf (295.26 KB, Downloads: 18)

67

Threads

435

Posts

4269

Credits

Credits
4269

Show all posts

hejoseph Posted at 2025-1-13 14:29:47
正多面体的结论如下:
1.png

手机版Mobile version|Leisure Math Forum

2025-4-21 14:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list