Forgot password?
 Create new account
View 2100|Reply 15

[几何] 2018年天津卷理科第8题 向量内积

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2018-6-8 23:45:01 |Read mode
Last edited by hbghlyj at 2025-4-7 00:09:10来了来了,不过,不想算。。。



如图,在平面四边形$ABCD$中,$AB \bot BC$,$AD \bot CD$,$\angle BAD = 120^\circ $,$AB = AD = 1$. 若点$E$为边$CD$上的动点,则$\overrightarrow {AE}  \cdot \overrightarrow {BE} $ 的最小值为

选项略

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2018-6-9 01:21:29
不用怎么算啊,又用那啥就行了 $4\vv{EA}\cdot\vv{EB}=(\vv{EA}+\vv{EB})^2-(\vv{EA}-\vv{EB})^2$,下略。

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2018-6-9 03:03:31
211.png
\[ \vv{AE}\cdot\vv{BE}=AE\times EF=EM^2=EO^2-MO^2\geqslant (EN+NO)^2-\dfrac{1}{4}=(1+\dfrac{1}{4})^2-\dfrac{1}{4}=\dfrac{21}{16} \]

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2018-6-10 13:26:02
回复 3# 乌贼
有见套路题(积化。。。。)

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2018-6-11 10:43:17
\[ \vv{AE}\cdot\vv{BE}=AE\times EF=EM^2=EO^2-MO^2\geqslant (EN+NO)^2-\dfrac{1}{4}=(1+\dfrac{1}{4}) ...
乌贼 发表于 2018-6-9 03:03
这种切割线的构造实在是厉害

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2018-6-11 10:47:37
回复 2# kuing


然后咋办?

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2018-6-11 10:51:07
Last edited by isee at 2022-3-4 23:27:00常规计算如下。

设$ED=x$,则
\begin{align*}
\vv {EA}\cdot\vv{EB}&=(\vv{ED}+\vv{DA})(\vv{EC}+\vv{CB})\\
&=\vv{ED}\cdot\vv{EC}+\vv{ED}\cdot\vv{CB}+\vv{DA}\cdot\vv{EC}+\vv{DA}\cdot\vv{CB}\\
&=-x(\sqrt 3-x)+\frac {\sqrt 3 x}2+0+\frac{3}2\\
&=\left(x-\frac {\sqrt 3}4\right)^2+\frac{21}{16}\\
&\geqslant \frac {21}{16}
\end{align*}

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2018-6-11 11:12:21
回复 6# isee

然后还用我说?

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2018-6-11 11:16:22
回复 8# 色k

没理解到方向。。说吧。。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2018-6-11 11:29:30
回复  isee

然后还用我说?
色k 发表于 2018-6-11 11:12

不要说取AB中点吧?然后此中点到CD距离最小?最后与3楼同质?

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2018-6-11 11:39:56
回复 10# isee

当然啊

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted at 2018-6-11 13:56:19
Last edited by hbghlyj at 2025-4-6 21:47:52按乌贼的思路,还变成了基本不等式。
作 $\mathrm{BF} \perp \mathrm{CD}$ 于 $\mathrm{F}, \mathrm{BG} \perp \mathrm{DA}$ 于 G ,则:

\[
\begin{aligned}
& \overrightarrow{\mathrm{EA}} \cdot \overrightarrow{\mathrm{~EB}}=(\overrightarrow{\mathrm{ED}}+\overrightarrow{\mathrm{DA}}) \cdot \overrightarrow{\mathrm{EB}}=-\mathrm{ED} \cdot \mathrm{EF}+\mathrm{DA} \cdot \mathrm{DG}=\frac{3}{2}-\mathrm{ED} \cdot \mathrm{EF} . \\
& 4 \mathrm{ED} \cdot \mathrm{EF} \leqslant(\mathrm{ED}+\mathrm{EF})^2=\mathrm{BG}^2=\frac{3}{4}
\end{aligned}
\]
未命名.PNG

2楼的运算可以用上这个矩形。

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

走走看看 Posted at 2022-3-4 10:07:26
回复 7# isee

$倒数第三行笔误,最后一个数字应是\frac{3}{2}$。

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

走走看看 Posted at 2022-3-4 10:17:00
回复 10# isee

Kuing的意思是,用到AB中点F。这样就变成了$EF^2-AF^2$,而AF为定值,F点为定点,因此只要EF最小即可。

E是CD上的动点,所以EF的最小值是过F点向DC所作的垂线段长,设垂足为$G,EF(min)=FG=1+\frac{1}{2}×cos60°=\frac{5}{4}$。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2022-3-4 23:27:30
回复 13# 走走看看

哎呀呀,真认真看了哇,论坛不少经典题~

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2025-4-6 21:47:23

手机版Mobile version|Leisure Math Forum

2025-4-20 22:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list