Forgot password?
 Register account
View 6041|Reply 23

[不等式] 一个三元不等式的加强

[Copy link]

20

Threads

37

Posts

355

Credits

Credits
355

Show all posts

12673zf Posted 2018-6-30 11:51 |Read mode
Last edited by hbghlyj 2025-4-11 00:20$x^2+2y^2+3z^2\ge k(xy+yz+zx)$
当k=$\sqrt{3}$,是比较好证明的,但是否存在k>$\sqrt{3}$,使得对于任意实数x,y,z不等式恒成立呢?

Related threads

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-6-30 18:10
`k_{\max}=4\cos(\pi/9)-2`

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-6-30 18:24
这类问题早就被玩烂,我也不卖关子了,直接搬 20 年前的《数学奥林匹克教程》上的过程:
QQ截图20180630181228.jpg
QQ截图20180630181253.jpg
QQ截图20180630181324.jpg

20

Threads

37

Posts

355

Credits

Credits
355

Show all posts

 Author| 12673zf Posted 2018-6-30 23:39
回复 3# kuing


    谢谢大佬的解答,长见识了。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-7-2 08:58
Last edited by 敬畏数学 2018-7-2 12:34此题算是一个略加改编的题。其实很简单直接配方(二次)或者二次函数图像解决。或者直接猜K=2,再正之OK!解决。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-7-2 13:48
回复 5# 敬畏数学

2# 的结果表明 k=2 不成立

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2018-7-2 16:14
回复 6# kuing
QQ截图20180702161346.jpg
这个行不行呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-7-2 16:37
懒得看,你不信你就试试代入 x=5/2, y=z=1 看看 k=2 成不成立

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2018-7-2 17:14
Last edited by lemondian 2018-7-2 17:30回复 8# kuing


    这是竞赛题所给的答案,不是我做的,我没验证过,难道原答案有错?

确实如此,验证不通过!原答案有误!

那么7#的解法问题出现在哪呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-7-2 17:59
才想起,二次函数的法子之前在 forum.php?mod=redirect&goto=findpost& … d=5263&pid=26005 (9楼)也写过,同样可以得出3#的结论……

20

Threads

37

Posts

355

Credits

Credits
355

Show all posts

 Author| 12673zf Posted 2018-7-2 19:21
回复 9# lemondian


    题目出处是安徽2018年初赛第11题,我当时选的是x=3,y=2,z=1(尽量偏向排序不等式中的倒序),有k<20/11约为1.81,所以我猜可能没有更大的值了。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-7-3 08:46
Last edited by 敬畏数学 2018-7-3 08:56回复 5# 敬畏数学
刚才在刷一道题时,想起貌似著名不等式,x^2+y^2+z^2》2xyCOSA+2xzCOSB+2yZCOSC(A,BC为三角形内角)
,再利用著名三角恒等式cos^2A+cos^2B+cos^2c+2cosACOSBCOSC=1,得到g(k)=k^3+6k^2-24=0,且|K|《2根号2,哈哈,三次函数问根得问题,轻松导数上来,零点存在定理,(0,+∞)递增,端点值代入为负,完毕!这种套路题很流行的,多刷!

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-7-3 08:47
回复 7# lemondian
运算低级错误!配方法也时OK的!

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-7-3 08:58
回复 3# kuing
脑细胞强大!

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted 2018-7-3 09:47
对二次型来说, 判别式法是非常好的选择, 原因是二次型的判别式仍然是二次型, 并且减少一个变元, 因此可以递推下去. 很容易求得所要的最佳值是方程$k^3+6k^2-24=0$ 的唯一正根, 大约是1.758.

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-7-3 11:46
Last edited by hbghlyj 2025-4-11 00:19回复 15# yao4015
但是此题全凭二次好像很难搞定。K=2不行。

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted 2018-7-3 13:19
回复 16# 敬畏数学

k=2, 上面的不等式根本不成立. 算出来的判别式是不定的二次型.  怎么会很难搞定呢?

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-7-4 11:29
回复 17# yao4015
确实是可以的。一样的。简单就是二次玩到底,最后得到:$ |k|\leqslant 2\sqrt{2},k^3+6k^2-24\geqslant 0$

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2018-7-5 09:04
回复 15# yao4015

这个根:1.758如何求得?三次方程求解吗?

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2018-7-5 09:06
回复 18# 敬畏数学

应该是$|k|\leqslant 2\sqrt{2},k^3+6k^2-24\leqslant 0$吧?

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit