Forgot password?
 Register account
View 1931|Reply 6

[函数] 一道三角函数题

[Copy link]

2

Threads

2

Posts

23

Credits

Credits
23

Show all posts

81096570 Posted 2017-6-23 11:56 |Read mode
Last edited by 81096570 2017-6-23 14:32已知在$\triangle ABC$中,$3cosA+2cosB=8cosC$  ,求$cosC$的最大值

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-6-23 12:45
已知$3cosA+2cosB=8cosC$  ,求$cosC$的最大值
81096570 发表于 2017-6-23 11:56
5/8呗,A=B=0时取等

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-6-23 14:07
嘛,楼主明显打漏了条件:在 $\triangle ABC$ 中,……

三角形的话,这题还是有点意思嘀……

根据嵌入不等式,对任意 $x$, $y$, $z\inR$ 及 $\triangle ABC$ 有
\[2yz\cos A+2zx\cos B+2xy\cos C\leqslant x^2+y^2+z^2,\]
待定正数 $t$,令 $x=\sqrt t$, $y=3\sqrt t/2$, $z=1/\sqrt t$,则上式化为
\[3\cos A+2\cos B+3t\cos C\leqslant \frac{13}4t+\frac1t,\]
由条件 $3\cos A+2\cos B=8\cos C$,上式化为
\[\cos C\leqslant \frac1{8+3t}\left( \frac{13}4t+\frac1t \right),\]
现在,取
\[t=\frac{\sqrt{217}+3}{26},\]
代入化简得
\[\cos C\leqslant \frac{\sqrt{217}-3}{32},\]
不难验证,当
\[\led
\cos A&=\frac{3\sqrt{217}-4}{52}, \\
\cos B&=\frac{4\sqrt{217}-27}{104}, \\
\cos C&=\frac{\sqrt{217}-3}{32}
\endled\]
时满足条件等式并且 $A$, $B$, $C$ 构成三角形,那么这就是取等条件,所以 $\cos C$ 的最大值就是 $\bigl( \sqrt{217}-3 \bigr)/32$。

2

Threads

2

Posts

23

Credits

Credits
23

Show all posts

 Author| 81096570 Posted 2017-6-23 14:25
是三角形中,呵呵

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-6-23 22:59
回复 3# kuing


    这个$\frac1{8+3t}\left( \frac{13}4t+\frac1t \right)$得三次方程了吧?怎么求出精确值的?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-6-23 23:02
回复 5# isee

求导后解的是二次方程

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-6-23 23:16
回复 6# kuing


    那就是我算错了,,嘿嘿。。。

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit